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- The Design of High-Resolution Upwind
Shock-Capturing Methods

by -
William Jackson Rider

Abstract

The design and construction of high-resolution upwind shock-capturing methods
is an effective means of solviug conservation laws of physics numerically. In the past,
the design of such methods was generally categorized into several distinct methods.

. This work shows how these methods can te viewed in a unified manner. Thus, the

~ various types of methods can more easily take ideas from one another to improve
. their design.

A generalized flux-corrected transport (FCT) algorithm is shown to be total vari-
ation diminishing (TVD) under some conditions. The new algorithm has improved
properties from the standpoint. of use and analysis. Results show that the new FCT
algorithm performs better than the older FCT algorithms and is comparable with
other modern methods. This is shown to be especially important for systems of
equations. The new formulation altows Riemann solvers to be used effectively with
FCT methods. This directly leads to a geometric analog to symmetric TVD and
FCT methods that is developed and expanded upon. This unities these methods with
- high-order Godunov (HOG) methods. Two new variants of this method are derived,
and shown to be uniformly non-oscillatory.

Limiters e an effective means of designing these types of methods. Earlier work
by Sweby concentrated on a small set of limiters in relation to one specific difference
- scheme. In this research, more general classes of limiters are discussed with extensiors
- to a wider class of schemes. In addition, flux-corrected transport and total variation
bounded (TVB) limiters are discussed, modified, and expanded. Two new classes
- of limiters are described: s-limiters and generalized average limiters. The recently
defined ULTIMATE limiter is analyzed within the framework of the other limiters.
- Some insight on the properties of this limiter is shown. The benefits of relaxing
* stric! constraints on the limiters such as TVD requirements are also discussed. For
coatse grids, limiters such as the TVB and the generalized average with bias improve

resolution considerably. This advantage does not hold as grids are refined, because
| TVD-type limiters have an advantage in terms of convergence.

Lastly, the question of whether the polynomial reconstruction technique used in
a HOG method should be based on cell-averages or point-values is studied. Despite
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stroug theoretical support of the cell-average based method, point-value reconstruc-
tion does work quite well in practice. This question is considered from twe stand-
points: the efficiency or economy of the reconstruction, and the accuracy and quality
of the sulution. The general behavior of the cell-average reconstruction is slightly more
effective than point-value reconstruction if the scheme is TVD. When the scheme is
not TVD, point-value reconstructions have some advantage in performance.

From the basis of the work given here, the design of high-resolution upwind shock-
capturing methods can be advanced in a more unified manner. This should yield
henefits for all of the methods falling into this general category.
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Preface

The path which led me to this point is worth exploring before going further. My
interest in numerical methods for fluid flow began as a prerequisite for the effective
modeling of heat pipes. | began by studying the work of S. V. Patankar [1] as
suggested by Dr. D. V. Rao. Over time, | became somewhat displeased with the
nature of the methods, their results, and limitations. By this time, | had become
interested in the numerical methods for fluid flow as things unto themselves. This
titme cuincided with my beginning employment at Los Alamos National Laboratory.
Shortly before arriving to work at the lab, I begar to be interested in the work of
Dennis Liles [2] for mmodeling two-phase flows. This work is based in large part on the
carlier work of Harlow and Amsden on the ICE. methods (3.

While investigating these methods, | came across a book by Oran and Boris {4].
The viewpoint expressed there was different than anything 1 had looked into before
and I found the methodology intriguing to say the least. Initiaily, | was very impressed
by the flux-corrected transport methods described by Oran and Boris when compared
to the classical methods | was used to. When I tried to use these metnods on a more
complex, system of equations problem, | saw a number of probleins with the solutions.
These observation formed the genesis of the research that followed.

Soon, | begau to read and attempt to understand total variation diminishing
schemes and later high-order Godunov methods. Both of these method types were
similar to the flux-corrected transport, but their performance on systems of equations
is significantly better. They seemed to have a much more appealing mathematical
basis. It was seeking the answer to the questions: how can flux-corrected transport
be improved? and how are flux-corrected transport, total variation diminishing and
high-order Godunov methods related? that produced Chapters 5, € and 7. |

Further work presentcd here primarily centered about answering several questions
about the use of high-order Godunov methods. The ties made in Chapter 6 makes this
applicable to the other method categories mentioned here. Chapters 7 and 8 expand
the line of thought taken with the flux-corrected transport methods and look at the
problem of designing limiters for second-order high resolution schemes. Limiters are at
the core of the construction of this type of numerical method and understanding them
is essential. The last two chapters of the dissertation clean up loose ends. Chapter 9
addresses some questions in reconstruction methods for high-order Godunov methods.
~ This dissertation can be viewed as a skewed reflection of my own evolution in

the understanding of these methods. 1 started by looking at FCT methods and
ended up relying on HOG methods for algorithm design. The reason for this is that
.. the Godunov-type methods are more physically and mathematically (philosophically)
~appealing to me. This is a matter of personal taste, but | do believe that they
represent an effective basis for future development along a number of fronts.

The work fcind in [5] has been accepted for publication in Communications in

1X



Applicd Numerical Methods. This work forms part of Chapter 8.

Finally, the bulk of the work presented in this dissertation lias been submitted in
the forin of papers to several professional journals. References to these can be found
in the bibliography [6, 7, 8, 9, 10, 11].



Notation

The notation used in this work requires a short explanation.

References are denoted by square brackets. Therefore the third reference would
be seen as [3]. The references are listed in order of their use. When more than one
reference is given, the first refercnce is the recommended one.

Equations are dencted by regular parenthesis. The fourth equation in the sixth
chapter is referenced by (6.4).

Theoremns and similar structures will be referenced if their proofs exist in the
literature. Those proven by myself will not contain a reference with their labels.
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slopes. This leaves the scheme with €°' continnity, but not (*° continuity. 97
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6.3

6'4

6.5

6.6

6.7

6.8

6.9

‘The solution of the scalar wave equation by the symimetric method
using both a noncompressive, (J;, and compressive limiter, ¢;. The
@) (6.3a) limiter produces a solution which is significantly better than
a first-order upwind solution, hut exhibits excessive sincaring from dif-
fusion. The compressive limiter (6.3b) shows an imnprovement in the
solution as a result of reduced diffusion. Both solutions exhibit some
lack of symmetry which is indicative of this methed. . . . . . . . . ..

The solution of the scalar wave equation by the quadratic method us-
ing both a noncompressive, QQ/J. and compressive limiter. Qg/3. Again,
the noncompressive limiter produces a solution that is diffused by com-
parison to the solution found with the compressive limiter (6.4b). Both
solutions have improved symlhctry whei compared with the symmetric
method, . 0 000 L oo e e e e e

The sy:mmetric UNO solution shows a marked increase in the preserva-
tion of the maximum -alue; however, the effects of a lack of synunetry
are also evident. Both solutions exhibit a leading phase error greater
than that present with the symmetric scheme, . . . . . .. ... ...

The quadratic UNO scheme gives maximum values slightly greater than
the maximum value of the initial distribution. The leading phase error
present in the symmetric scheme is improved somewhat. The compres-
sive limiter gives the least additional resolution in this case. . . . ..

The symmetric scheme gives good, well-behaved convergence when the
solution is smooth (¢ = 0.2), but when a shock forms (¢ = 1.0), the
crror grows by about an order of magnitude and the L. normn’s curve
has a “knee” in it indicating a reduction in the order of convergence.

The quadratic scheme has better accuracy in general than the sym-
metric scheme, but after the shock forms the “knee,” the solution is
somewhat more severe in nature. For a sinall range of Az's the solution
actually diverges. . . . ... ... .... I _ e ..

The symmetric INO scheme bas better accuracy than cither of the
previous methods. The convergence after the shock in the Ly, norm is
worse, however. . . . . ... .. e e e

6.10 This scheme is the most accurate of the schemes shown here, but the

behavior associated with the Lo, norm at t = 1.0 is worse. Despite
this, the solution was more accurate in every norm than any of the

other methods, . . . . .. ... . ... e
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6.11

6.12 T

6.13

The solution of Sod’s shock tube problem by the symmetric scheme
is (uite good except for some smearing near the contact discontinu-
ity. The solution to the blast wave problem shows several important
features also related to the smearing of contact discontinuities leading
to the clipping of the right peak and the nearly complete loss of the
discontinuity at X = 60. The filling in of the gap between the peaks
results from smearing in rarefaction waves. . . . . . .. ... ...,

I'he oveiall results using the quadratic schemwe are very similar to the
syminetric scheme. The resalntion of the solution is enhanced in both
cases. This is especially noticeable at the shock in Sod's problem and
in the left peak and rarefaction wave between the peaks in the blast
waveproblem, . . . ... ... L L L

The symmetric UNO scheme gives imuch better resolution of contact
discontinmities as shown by both figures. The price is several oscilla-
tions. One can be seen te the left of the contact discontinuity in Sod's
problem. The results for the blas. wave problem are quite impressive

~except for the dip to the left of the left-most contact discontinuity. . .

6.14

The quadratic UNO scheme seems to have the good aspects of the

. symmetric UNO scheme without the oscillations. For bolh problcms.

7.1
7.2
73

8.1

the resnlution is enhanced. . . . . . .. ... e e e e s e e e e e

The classic FCT limiter is shown for v = 0.25 in Fig. 7.1a and v = 0.5
in Fig. 7.1b. Both of these figures show that where r¥ < 1 the limiter
is very compressive, but not second order in nature. . . . .. ... ..

The scalar square and sin® z wave solutions using several FCT limiters
with a Lax-Wendroff high-order flux. ... ... .............

The scalar square and sin? z wave solutions using several FCT limiters

with a Lax-Wendroff high-order flux and upwind 'iasing. . . . . . ..

The computational stencil of the main limiter types in one dimension.
Brackets indicate which points are used in-evaluating local gradients.

.The modified flux or cell-centered limiter is centered about grid point
J, the symmetric limiter is centered about cell-edge j — 1, and the

upwind-biased limiter for cell-edge j — § is centered about cell j - 1 for
a > 0. For a < 0 it would have the same stencil as the cell-centered
Bamiter. . . e e e e e,
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8.2

8.3

8.5

8.6

8.7

8.8

. 8.9
- The resulting limiters are TVD and do not suffer from the same diff-

The second-order TVD regions are shown in the shaded regions of these
figures. The olher lines show the limits of the TVD region for an ex-
plicit time differencing. Figure 8.2b gives the TVD regions assuming Q
is positive definite. This agrees with the presentation given by Sweby.
Figure 8.2a shows the TVD region assuming @Q is not positive definite.
The second-order TVD region includes the lines Q = rfor0 < r <1
and Q = | for » > 1. The lines denoted by Q. w and Quw correspond
to the Lax-Wendroff and Beam-Warming methods. The regions lying
between these curves are second-order accurate. The other “thin” lines
outline the TVD regions. In Fig. 8.2a this is the r-axis for r > 0. For
Fig. 8.2b thisis the lineQ = —-rfor0<r<land @ =1 forr > L.

This shows the minbar limiter. It is interesting to note that for an
upwind-biased cell-edge scheme this limiter gives a Beam Warming
scheme for |r| < | and a Lax-Wendroff method for |r| > I. Figurc 6.3b
shows the third-order region of the plane. . . . . . . .. .. ... ..

Figure 8.4a shows the minmod and superbee limiters. The minmod
limiter gives the lower boundary and the superbee limiter gives the
upper boundary of the second-order TVD region. In Fig. 3.4b, van
Leer’s and the ceutered limiter aregiven. . . . . . . . . . ... ....

Figure 8.5a shows the limiter, Q,, for n = 1.5. The plot shown by
Fig. 8.5b looks similar to Fig. 8.3a, the difference is that the upper
boundary of the second-order TVD region is given by one of the two
limiters (Qoc = m(1,2r))for r < 1 and by the other (Qoc = m(2,r))

forr>1. . ........ e e e e e e e e e e e e e e e e e

Three of the three argument limiters are shown i.ere. These are the
minmod limiter (Q;), the centered limiter (Q.), and a modified min-

mod limiter ((Q}). The modified minmod limiter does not give TVD

results because of its form and subsequent behavior when r* < 0. The
other two limiter are TVD for second-order symmetric type schemes.

Both of these limiters use the design philosophy of the modified min-
mod scheme. Figure 8.7a uses van Leer's limiter and Fig. 8.7b uses the
superbee limiter. Both are not TVD for r*¥ < 0, but also are not TVD
should r* grow sufficiently large with both being greater than 1. . . .

The three argument analog to the minbar limiter is shown here. . . .

Here a different methodology is used to create three argument limiters.

culties as the modified minbar type of limiter. The two base limiters
used here are van Leer’s and the centered limiters. In practice any
TVD two argument limiter can be used in this context. . . . . . . ..
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8.10

8.11

8.12

8.14
8.15

8.16

8.17

- 8.18

The limiters shown here use the symmetry property discussed in the
text. The limiter shown in Fig. 8.10a is analogous to the centered
limiter while Fig. 8.10b is analogous to the superbee limiter. Both
are second order and TVD. Figure 8.10c gives a van Leer type limiter,
which is not TVD but works quite well in practice. . . ... ... ..
The solution of the scalar wave equation by both these methods is
shown for two test problems. In both cases, the upwind method pro-
vides superior performance. . .......,...............
The solution to Lax's problem highlights the resolution of both shocks
and contact discontinuities as well as the symmetry properties of the
solution methods. . . . . . ..., .. e e e e e e e e e e e e

3 The solution to Sod’s problem by both methods shows the improved

resolution given b, the upwind-biased scheme. . . . . . . ... .. ..
In the blast wave problem, the deficiencies of both methods are most
clearly shown. The difficulty of the problem is due to the large amount
of structure confined to a small physical space. . . . .. ........
Here the behavior of the discontinuity detector in the artificial com-
pression algorithin is shown for use with both two and three argument
himiters. . . . . .. L e e
Two cases of the two argument TVB limiter are given here. The line
that grows upward along the line Q = % (1 + r) past r = 3uses MAz =
5 while the other line uses mAr = 2. Both are always in the second-
order regionof theplane. . . . . . ... ... ..............
The three argument TVB limiter is shown here for MAz = 2 and
MAz = 5. The larger value of MAz gives a larger “plateau” on the
Plot. . . e e e
Two S-limiters are shown here. The upper of the two lines is for the

- centered limiter S, while the lower is for S;. S, is a TVD limiter.

'8.19

The generalized average limiter is shown in these figures. Figure 8.19a
gives two examples of the two argument limiter for n = 2 and n = 3.
Neither of these limiters is TVD. Figure 8.19b shows the n = 2 limiter
. for the three argument case. . . . ... .................

8. "0 The ULTIMATE limiter is shown in this figure without the benefit of

8.21

the high-order upwind flux. The basic limiter is not TVD for explicit
r'me  <cretizations unless C = 2. The QUICK differencing is included
b~ ne e * rar the origin gives non-TVD results for explicit
schenies. L L e e e
The scalar square and sin? z wave solutions using several two argument
TVD limiters. Note that the SB2 limiter compresses the sin® z profile
INOASqUATE WAVE. . . . . . . . oo it e e o e e e e .
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8.22

8.23
8.24
8.25

8.26

8.27

8.28
8.29

8.30

9.1

9.2

9.3
9.4
9.5
9.6

9.7

The scalar square and sin? z wave solutions using several three argu-
ment TVDlimiters. . . . . ... .. ... ... ... . . ...,

The scalar square and sin? z wave solutions using several three argu-
ment “prime” limiters. Note the decidedly non-TVD behavior of the

SB3P limiter. . . . .. .. .. e e
The scalar square and sin? z wave solutions using artificial compression.
It is notable that the solution with the two argument limiters (MM2A)
compresses the sin’ z profile in a similar manner to the $B2 limiter. .
The scalar square and sin? r wave solutions using TVB limiters. The
three argument TVB limiter produces a results nearly identical to the
Lax-Wendroff method. . . ... .. ... .... .. ... ... ....
The mod:fied three argument TVB limiter is shown here for MAr = 5.
MM3TVB’ is shown in Fig. 8.26a. MM3TVB" is shown in Fig. 8.26b.
The scalar square and sin? z wave solutions using modified three ar-
gument TVB limiters. These improve the performance of the three
argument TVB limiters. . . . . .....................
The scalar square and sin? r wave solutions using two and three argu
ment S-himiters. . . . . ... L. e
The scalar square and sin? z wave solutions using the generalized av-
erage limiterswithn=2. ... .....................

The scalar square and sin? r wave solutions using the generalized av-
erage limiters with n = 2 with a bias added as suggested in [198].

The steps of Godunov's methods are shown for a highe: order polyno-
mial reconstruction. The solution in the small takes place with data
that has been time centered over t.he domain of dependet. = of the local
characterislics. . . . . . . . . o o i it vt it i e
The reconstruction of the test functions by Godunov’s method. The
exact functions are given by the dashed lines. The grid on the plot
denotes the computational grid. . . . . . . . e e e e e e e e e
The reconstruction of the test functions by a second-order HOG method
with theminmod lispiter. . . . . . . . ... ... ... ... .......
The reconstruction of the test functions by a second-order HOG method
with the centered limiter. . . . . . . ... e e e e e e e e e e e
The reconstruction of the test functions by a second-ordesr HOG method
with the superbee limiter. . . . . . . .. e e .
The reconstruction of the test functions by a MUSCL method with the
threec argument centered limiter. . . . . .. . ... ... ... ...
The reconstruction of the test functions by a symmetric HO(: method
with the three argument centered limiter. . . . . . ... ... ... ..
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for these two structures are sharp. The density and energy profiles

“show more structure than the velocity or pressure profiles because of

continued. . . . . ... e e e
The exact solution for Lax's Riemann problem. Note the appearance
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The exact solution for the vacuum Riemann problem. Note the ap-
pearance of the rarefaction waves running both directions from the
initial discontinuity. The internal energy plot (c) shows error near the
vacuum becauseof roundofferrors. . . . . .. ... ... ... ...,
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The “exact” solution for the blast wave problem. Note the large
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contact discontinuities and shock waves. . .. .............
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A representation of the initial conditions for the Riemann Problem. .
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is denoted by the solid line in each plot, and the solution obtained
with Godunov's method is shown by the circles. Figure B.2a shows
the solution obtained with the naive Riemann solver followed by Roe's
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B.3
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C.l
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C.5

C.6

C.7

The solution for Lax's shock tube problem at t = 15 is obtained with
each of the methods discussed in this appendix. The exact solution
is denoted by the solid line in each plot, and the solution obtained
with Godunuv's method is shown by the circles. Figure B.3a shows
the solution obtained with the naive Riemann solve followed by Roe’s
Riemann solver (B.3b), Engquist-Osher’s Riemann solver (B.3c), the
HLLE Riemann solver (B.3d), and the LLF Riemann solver(B.3e). . .
continued . . . ... L e e e e e e e e .
continued . . . L L L e e e e e e e e e e e
The solutions to the blast wave problem at ¢ = 3.80 are shown. The
converged numerical solution is shown by the dashed line and the solid
line shows the solution obtained with the approximate Riemann solvers
in conjunction with a first-order Godunov method. Figure B.4a shows
the solution obtained with the naive Riemann solve followed by Roe's
Riemann solver (B.4b), the Engquist-Osher's Riemann solver (B.4c),

the HLLE Riemann solver (B.4d), and the LLF Riemann solver(B.4e).

continued . . .. L L L s e e e e e e e e e e e e e e e e e e
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Sod's problem computed with the characteristic formulation with con-
servative variables. In these figures, the solid line denotes the exact

274

solntion, whereas the circles denote the approximate numerical solution.284

Sod’s problem computed with the characteristic formulation with prim-
itivevariables. . . . ........... e e e e e e et e e
Sod’s problem computed with the two-step formulation with conserva-
tivevariables. . . . .. .. ... ... ... ... ... .. ...,
Sod’s problem computed with the two-step formulation with primitive
variables. Note the small spikes at the end of the rarefaction waves
and the post-shock spike in the velocity solution. . . ... ... ...
Sod’s problemn computed with the component-wise formulation with
conservative variables. Note the small oscillations in the velocity solu-
tion between the rarefaction and shock waves. . . . .. ... ... ..
Sod’s problem computed with the component-wise formulation with
primitive variables. Note the small oscillations in the velocity solution
between the rarefaction and shock waves. . . . . ... .........
Lax's problemn computed with the characteristic forinulation with con-
servative variables. With the exception of this solution, all the solutions

‘to Lax’s problem have small spikes or oscillations associated with the

contact discontinuity. This is indicative of the overcompressive nature
of the limiter placed on the density. The conservative characteristic
formulation guards against this problem. . . . . . . ... ... .. ..
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C.8 Lax's problem computed with the characteristic formulation with prim-
itive variables. Despite using a characteristic formulation, a small os-
cillation is present with the contact discontinuity. . .. ... ... ..

C.9 Lax's problem computed with the two-step formulation with conserva-
tivevariables. . . . .. .. ... ... .

C.10 Lax's problem computed with the two-step formulation with primitive
variables. . . . .. L. e

C.11 Lax’s problem computed with the component-wise formulation with
conservative variables. . . . . . . ... .. ... L L L

C.12 Lax’s problem computed with the component-wise formulation with
conservative variables. . . . ... ... ... L L oo,

C.13 The vacuum problem computed with the characteristic formulation
with conservative variables. . . . .. ... ...............

C.14 The vacuum problem ~omputed with the characteristic formulation
with primitive variables. . . . . . . ... ... ... .. o0,

C.15 The vacuum problem computed with the two-step formulation with
conservative variables. The use of conservative variables with this flow
is disastrous. The total energy has become negative in the region
around X =50. . . ... ... ... e

C.16 The vacuuin problem computed with the two-step formulation with
primitivevariables. . . . ... ... ... ... 000 o000,

C.17 The vacuum problem computed with the component-wise formulation
with conservative variables. The conservative variables have not guar-
anteed that positive definite quantities (total energy) stay positive def-

C.18 The vacuum problem computed with the component-wise formulation
with conservative variables. . . . . ... ... .......... ...
C.19 The blast wave problem computed with the characteristic formula-
tion with conservative variables. The first peak is captured very well,
but the second is clipped severely. With the blast wave solution, the
“exact” solution is marked by the dashed line and the approximate
numerical solution by thesolidline. . . . .. ... ... ........
C.20 The blast wave problem computed with the characteristic formalation
with primitive variables. Both peaks are clipped and the contact dis-
continuity at X ~60issmeared. . ...................
C.21 The blast wave problem computed with the two-step formulatic n with
conservative variables. This is similar to Fig. C.19, but the -ontact
discontinuity at X x 60 is smeared significantly more. . . . . . .. ..
C.22 The blast wave problem computed with the two-step formulation with
primitive variables. This solution is highly resolved and is of high
quality with the =xception of the overshoot of the second peak. . . L .
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(1.23 The blast wave problem computed with the component-wise formaula-

tion with conservative variables. ‘This solution is fairly well resolved,
but is somewhat “noisier” than other solutions. . . . . .. .. ..

('.24 The blast wave problem computed with the component-wise formula-
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tion with conservative variables. This solution is very similar to Fig. ('.22.:

The density and velocity solutions 10 Sod’s problem using both the
usual and robust reconstruction methods . e e e e
The density and velocity solutions to the vacuuin problem using both
the usual and robust reconstruction metiods. . . . .. . ... L.
The density and velocity solutions to the vacuum problem using both
the usual and robust reconstruction methods, . . . ... ... ..
The density and velocity solutions to the blast wave problem using
both the usual and robust reconstruction methods. . . . 0. ..

The solutions for the neo-classical moditied Hux upwind schemes on
the scalar advection of a square wave (¢ = 1 and v = 8.5).

The solutions for the neo-classical synusetrie upwind schemes on the
scalar advection of 4 square wave {a = | uud - = 0.5).. . . . ..

A diagram showing the trace of characteristics hack from the cell corner
of cell (z,5) with both velocities being positive. . . . .. ... L.

Initial condition and exact solution after » rotations for the cone prob-
iem. The spike in the upper right hand corner of the upper figure is
set equal to | and the spike in the lower -eft hand corner equal to —3.
Initial condition and exact solution afic- » rotations for the slotted
cylinder problem. . . Ce e e

The split Godunov method solution fur the rotating cone shows the
excessive diffusion of this method. e e e e .
The split Godunov method solutmu l'or the rotat.mg slotted cylinder
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F.11 The Lax-Wendroff method solution for the rotating slotted cylinder
shows the excessive dispersion errors of this method. . . . . . . . ..
F.12 The split HOG mecthod solution for the rotating cone shows the high
quality of thismethod. . . . .. .. ... ... .............
F.13 The split HOG method solution for the rotating slotted cylinder shows
the high quality of this method. . . . . .. .. ... .. ... .....
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~ F.18 The CTU HOG method solution for the rotating cone shows the reso-
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F.19 The CTU HOG method solution for the rotating slotted cylinder shows
. the resolution and noise of thismethod. . . . . ... ... .......
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F.21 The Hancock-van Leer HOG method solution for the rotating slotted

| cylinder shows the resolution and reduced noise of this method.
F.22 The Runge-Kutta HOG method solution for the rotating cone shows
' the resolution and the lack of noise of this method. . . ... ... ..
F.23 The Runge-Kutta HOG method solution for the rotating slotted cylin-

der shows the resolution and the lack of noise of this method.
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Chapter 1.
Overview

Although a meal can be enjoyed without understanding the process of digestion,
numerical methods should be both understood and enjoyed. This requirement
is not merely the whim of a tidy mind, for a inethod once understoud can often
be improved with little effort. J. J. Monaghan [12]

The topic of this disscrtation is the design of high-resolution upwind shock cap-
turing methods. By high-resolution | mean that the method is capable of resolving
various fine detail features of the solution field without resorting to an excessively
fine grid. U'pwind makes reference to the method’s use of the mathematical/physical
structure of the solution ficld, and the governing equations in constructing the nu-
merical method. Finally, the adjective shock-capturing clarifics the type of method
developed. Some methods track discontinuities or shocks in the solution ficld and
cssentially use these tracked features as internal boundaries. Shock-capturing meth-
ods do not do this, and “capturce”™ discontinuities without modification of the method
used throughout the solution field. .

The next three chapters give a brief introduction to these topics. The first of
these three chapters gives background and motivational information regarding the
study of this topic. Classical shock-capturing methods are the topic of the second
of these chapters. These classical methods provide the foundation for the work that
follows. The third and final introductory chapter gives an introduction to modern
high-resolution shock-capturing methods, and the categorics they fall into.

Following this introduction, § introduce the topic of method design. This be-
gins with the method known as flux-corrected tra-sport (FCT). The FCT method is
known to have certain pathological problems, and this chapter addresses this mat-
ter in a systematic fashion. Through this analysis it becomes clear that the FCT
is more intimately related to other mnodern methods, most notably syinmetric total
variation diminishing (TVD) methods. This relation is expanded upon and exploited
in improving the FCT method’s performance. In the chapter that follows, the com-
bined FCT/Symmetric TVD) methods are related more closely to high-order Godunov
(HOG) methods. The HOG methods are a philosophically satisfying means of defin-
ing high- resolution upwind shock-capturing methods because the process is divided
into two parts: reconstruction (interpolation) and evolution (upwinding). This de-
coupling of the method development allows one to concentrate on one or the other
feature. From this, unity of the methods is demonstrated, and new, improved meth-
ods can be derived.

The two chapters following this unification of the methods discuss the construction
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of limiters. Limiters are the means through which modern methods are differentiated
from classical methods. Their construction is the most important portion of method
design, and has a profound impact on a method's performance. Past studies of
“limiters have been narrowly focused, and thesc chapters are aimed at broadening this
view. Finally, a chapter on some basics of the reconstruction step are discussed with
a critical view taken of current practices. ,

In the appendices a number of more practical aspects of extending these methods
to systeras of equations are discussed.
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Chapter 2.
Introduction

Of a good beginning cometh a good end. John Heywood

2.1 Background and Motivation

Recently, several articles have appeared highlighting the importance of numerical
approximation of conservation laws from both a theoretical and practical stand-
point {13, 11]. High quality numerical approxirnations to conservation laws are nec-
cssary in a numnber of endeavors as noted at the end of his chapter. Numerical work
is also becoming inereasingly important for theoretical studies. In a very real sense,
numerical experimentation is becoming a third major thrust of science along side
experimental and theoretical work.

This chapter gives an introuu: tion to the subject of numerical approximations t=
hyperbolic conservation laws (H('Ls). It covers the basis and motiv..tion for the stud:’
of the subject and provide a brief introduction to some of the important theorctical
concepts in Section 2.2. Also, the basic philosophy us.'d 14 developing numerical
algorithms to solve these sorts of equations is presented in Section 2.3. A number of
applications of the accurate solution to HCLs is presented in Section 2.4. ['his serve
to underlire the importance of this subject to a wide sange. of :~ientific pursuits.

The primary motivation for pursuing any subject is to sccl: understanding. In a
number of diverse ficlds, a similar process is responsible for a rich variety of physical
(or mathematical) behavior. U he role of transport of some quantuty like inass, energy,
particles, sound, wave packets etc.) can be thoughs of te ne at the heart of most
physical processes (the last section of this chapter contains a longer .ore detailed
list). These physical systems can all be charactetized at a simple level by the same
model equation,

Ju If(uv)

at dr
where u is the transported quantity and f (1) is the flux iunction fo: this quantiy.
In mathematical terms, this is a hyperbolic equation if 9J/Ju » = real numbe:. This
equation describes the transport and conservation of u in the £ — 1 plasie. In gcncral;
this equation can represent a system of equations as well. In thet care, u and f(u)
are vectors. Section 2.2.1 covers this subject in more detail. Thus, (2.1) tepreseuts
the basic for of a HCL. |

The solution of the above equation exists in closed form for only a few simple,

idealized cases thus sorme approximations must be made to solve it ju the general case.

0. (2.1)

"
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If the approximations are sufficiently detailed and accurate, the solutions found can
exhibit, the wide range of nonlinear behavior and rich phenomena found in nature.
As is discussed later, good approximations can also lead to the discovery and/or
clarification of physical phencmena {15, 16).

A number of detailed references on these subjects exist in the literature. On the
basics of HCLs some of the recommiended references are Lax [17, 18], Smoller [19),
Landau and Lifshitz {20}, Mihalas and Mihalas {21], Duderstadt and Martin [22],
Chorin and Marsden (23], Anderson [24] and Courant and Friedrichs {25). These
references present the material in a readable informative manner, although they vary
in emphasis and difficulty. All of these references are biased in the direction of fluid
flow (except Duderstadt and Martin), but considering that that is the most common
application, this is understandable.

From the presentations found in both Mihalas and Mihalas and Duderstadt and
Martin it can be seen that fluid equations can be viewed as continuum extensions
of the Boltzmann transport cquation (via a Chapman- Enskog expansion or similar
procedure). The Boltzmann transport cquation has a form that is very similar to
(2.1) [26. 27)

(;—{+u'Vj=S¢ou. (2.2)

where [ is a time dependent distribution function, f (r,u,t), in position and velocity
space. S..q is a scattering kernel that Iignore. In fact, with S,y set to zero, the
equation is the multidimensional equivalent to (2.1) with constant velocity by setting
p = f. Additionally, the diffusive terms in the full set of equations (Navier-Stokes) can
be viewed similarly. This “transport™ viewpoint has been an active area of research
in hyperbolic heat conduction [28, 29]. Similar lines of thought can be found in
radiation transport in the passage from a transport to diffusive approximation to the
Boltzmann transport equation [22). |

Remark 1 The solution collisionless to the Bolizmann equation is explored in some
depth by Harten, lLax and van Leer [30) with relation lo the general solution ¢f HCLs.
This has specific application to a method known as fluz splitting which is covered in
some detail in Appendiz B.

‘The numerical solution of equations of this sort (for continuum approximations)
can be fo:nd in a number of sources as well. The most basic and perhaps elegant
source is Richtmyer and Morton's book (31] which contains much of the basic theory
to support classical methods of solution. The history of computational fluid dynamics
(CFD) is presented in Roactie [32], Potter [33] as well as Anderson, Tannehill and
Pletcher [34). Roache contains a complete account of the early development of CFD
and a large number of references. More recent developments are covered in several
texts: Oran and Boris {4], Hirsch [35, 36] and Fletcher {37, 38]. The text by Oran and

Boris is especially recommended as an introduction to the entire subject of numerical
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solution of complex physical problems as well as HCLs. A book by Sod [39) contains a
good deal of mathematical theory. Recently, LeVeque has released some lecture notes
in the form of a monograph [40]. This work is highly recommended as an introduction
to conservation laws from both a mathematical and numerical perspective. In addition
to these books, a number of survey papers have appeared in recent years; these
include [41, 42, 43, 44, 145, 46, 47, 48]. An intcresting survey of methods has been
done in relation to nonlincar acoustics of rocket engines [49) as an extension of the
review by Baum and Levine [50). This survey underlines the point that fewer and
fewer approximations are necessary in the analysis of physical systems because of the
power of modern hardware and algorit!.ms.

Figure 2.1 shows the rough family tree for the development of upwind (explained
later) approximations to (2.1). Beginning with the work of Richardson [51) on the
soiution for stress in dams and moving on to the paper on partial differential equation
by Courant, Friedrichs and Lewy [52] this subject had its genesis Von Neumann
and Richtmyer {53] introduced artificial viscosity which was followed shortly by two
methods that did not introduce numerical dissipation artificially [54, 55}, but did
through the nature of the finite difference equations. The beginnings of more powerful
methods for solving HCLs can be found in several papers by Godunov (56, 57} and.
Lax and Wendroff's famous paper [58]. These papers lead to several seminal works by
Boris and Book [59] and van Leer (60] who were the first to revognize the importance
of nonlincarity in difference schemes. These two papers were at the root of a large set
of work in the last twelve years highlighted by the work of Harten (61}, Zalesak [62],
Roc [63] and a group of rescarchers at UCLA (64, 65, 66] where the earlicr work was
clarified and extended. It is the construction of these approximations that is the
subject this research topic. :

2.2 A Mathematical Introduction

Consider the same equation as above

du  8f(u) _
ot o -0

which is a first-order hyperbolic transport equation for u and as before [ is the flux
of u. Equation (2.3a) can be written as

Ou  du

(2.3a)

1 + a5 = 0, (2.3b)
where the flux Jacobian is defined by
a=2L
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If the characteristic speed, a, is constant for all z, then an exact solution exists for
(2.3b). This solution is

u(z,t) = u,(z - at) , (2.4)

" where u, (z) = u(z,0) is the initial condition. This defines the scalar wave (Kriess)
equation. For a more general prescription of f a closed form solution does not exist.

2.2.1 Systems of Hyperbolic Conservation Laws

A system of m conservation hyperbolic laws can be similarly defined; however, the
behavior which it describes is considerably more complex. Consider

U  oF(U)

5 I - 0, (2.5a)

which is a set of hyperboiic conservation laws where U is a column vector (u',u?,...,u™ )T
of conserved quantities and F is a column vector (] J.. ,}"")T of fluxes of U.
l-.quatlon (2.5a) can be written as '

ou U : ,
where .
At fou® ... 8/ ou™
PO .
=35 =

oot ... A foum

The matrix A is the flux Jacobian for the system defined by {2.5b).

In general, equations of the type considered above can develop discontinuous so-
lutions even when the initial data is smooth. Because of this, the solutions are not
urique. To rectify this, the admissible solutions must satisfly an entropy condition (for
details on this see [17, 18, 19, 40} see [67] for a simple introduction). It is the formation -
of discontinuities in the solution that causes the difficulties for finite-differcr.ce solu-
tions of (2.3b). At these discontinuities, the function ceases to be smooth, and the
usual assumptions made in constructing finite- difference approximations collapse.
As a result, more physical information needs to bc incorporated into the solution
procedure.

The system of equations is classified as hyperbolic if all the eigenvalues of A are
- real (30]. These: cigenvalucs A, can be arranged in the order of increasing magnitude,
- thus

ME<M...€h<... 0oy €A .
Lax (18] has defined ~atropy conditions for hyperbolic equations and systems. Given
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'l-'igurc 2..2: The left and right states have m waves associated with them (4) in this
casc and m — 1 constant states between them for ¢ > 0. ;

two states ug and ug, at ¢t = 0 (in one spatial dimension), which exist to the right
“and Icft of a discontinuity respectively, the admissible speed of the discontinuity must
satisfy this inequality |

Aur)>s> A{ug) , ’ : (26&)

where s is the speed of the discontinuity. For systems this condition is
M(ug) >8> Mlun) , (2.6b)

with

A1 (uL) < 8 < Mgy (un) . . (2.6¢c)
These conditions form an entropy'condition for systems. Stated in other terms, this
means that the entropy must either remain constant or inctease in a system. An
increase in entropy occurs across discontinuities. These conditions must be met for a
solution to the system to be physical in nature. Menikoff and Plohr [68] explore more
general cases. In some cases especially near phase transitions, the isentropes of the
system fail to be convex thu:s causing physical solutions to violate Lax's conditions.

Lax also states that for a system of m equations, 72 — | consta~t states exist
between the left and right states at ¢ > 0 (sce Fig. 2.2). These states can be sep-
arated by rarefaction or shock waves or contact discontinuities. A rarefaction is a
smooth expansive transition, while a shock is a shary sudden change where the flow
is discontinuous. A contact discontinuity is like a shock, but some quantities may be .
continuous across it. '

An additional manner of characterizing iystém (or equationi) of HCLs is to
~ analyze the structure of the eigenvalues. Lax (69, 17, 18] defines an eigenvalue as
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being linearly degenerate if

(7)) .

5{} Py = 0 * (27&)
and as genuinely nonlinear \f ‘

O 20 (2.7b

au ™+ ' .7b)

where r, is the k™ right eigenvector. An example of a linearly degenerate cigenvalue
is the characteristic speed in the scalar wave equation (A, = a, da/Ju = 0, and
r; = 1). A genuinely nonlinear eigenvalue can be found in Burger’s equation (A, =
u, Juf/du = 1, and r; = 1). These equations can thus serve as models for the
behavior of these types of waves in more complex equation(s). In the Euler equations
(discussed in detail in Appendix B) the eigenvalues associated with sound waves are
genuinely nonlinear while the eigenvalue(s) associated with fluid motion is linearly
degenerate. A shock is associated with genuinely nonlinear eigenvalues while a contact
discontinuity is associated with linearly degenerate eigenvalues. A shock in this sort
of system is referred to as a k-shock and a rarefaction as a k-rarefaction. For contact
discontinuities, the above relations must be modified to read

Mug) = 3= Aug) , (2.8)

thus the flow speed remains constant across the contact discontinuity.

Remark 2 Systems of conservation laws which are not strictly hyperbolic [70] has
been the subjec. of intense research lately. This is a topic of theoretical and practical
interest which has direct application to three-phase flow in porous mcdia which form a
two equation system of conservation laws in one dimension. The numerical solution
of such systems is following suil and benefiting greatly from the recent increase in
theoretical understanding. Another related area that could benefit from some theorrti-
cal/numcerical work is two-phase flow [71, 72). The application of numerical methods
to two-phase flow has a number of striking similaritics to multiphase flow in porous
media.

These equations admit discontinuous solutions thus requiring that the solution
converge in a weak rather than a strong sense. By a weak solution | mean that
solutions satisfy (2.1) in the sense of distributions [30, 19}, i.c.,

I [%%ui-gs ]dzd;+/_:¢(x,o)uo(z)dz=o (2.9)

for all '™ test functions ¢ (z,t) with compact support.

The above statement can be reformulated to give a form useful for the construetion
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of difference schemes. Integrating (2.1) over the rectangle (zg,zy) x (to,¢;) gives

["u;mawljugma+[7wummmiﬁfuumnm=o¢um

Thus where the solutior is smooth, (2.1) holds, but across curves of discontinuity, the
Rankine-Hugoniot condition holds as

s(up—ur) = f(up) - f(u.), (2.11)

where s is the speed of the discontinuity and ug and u; are the states to the left
and right of the discontinuity, respectively. For numerical work the above statement
is quite profound. The solutions arc conserved cell-averages rather than point-values
and the fluxes are time averages of the flux at the cell boundaries. These definitions
are convenient for use with finite volume discretizations.

It is well known that the weak solutions to (2.1) are not unique. To find the
correct solutions, an additional condition must be met. This type of condition is
known as an entropy condition after the physical quantity of the same name (17, 18].
In [73], it was shown that entropy satisfying solutions of (2.1) are limiting solutions
to a parabolic cquation

du + af(u) _ ¢8’u

ot 0z ~ 0z?’
with ¢ > 0 and the !imit being taken as ¢ | 0. This connection is explored at some
length in Chapter 8. |

(2.12)

2.2.2 The Rankine-Hugoniot Conditions

The Rankine-Hugoniot conditions are especially important to the theory of conser-
vation laws whe: solutions are discontinuous. Several elegant proofs are available in
the literature. One is found in [18]. Referring to Fig. 2.3 and defining

um=/ﬁuma=/%uﬁa+/ﬁuma, (2.13a)

difierentiating vrith respect to time, and using the governing equation (2.1) one gets

dU v Ou 4 u :
=L adz-w:.ai-/'»ﬁdz-i-uns. . (2.13b)

where uy, and ug are the states to the left and right of the curve of discontinuity
z = y(t) and s = dy/dt. Using Ou/0t = —3f/0z and :arrying out the integration

one gets

dU

=l Jutus—fit fr—-uns, (2.13c)
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Figure 2.3: A pictorial representation of the domain used in the proof of the Rankine-
Hugoniot condition (adapted from [18].)

with the conservation law stating that

dU
"“"' =]."I.o T o | (2'13(’)
then ' , -
stul =111, | (2:13¢)

where [u] = ug — u and [f] = fr — fi. In [23] another proof is given

2.3 General Numerical Philosophy

This section covers the basic philosophy used in the numerical approximation of HCLs.
The methods discussed here can all be classified as finite difference or finite volume
type methods [74]. Because of Lax and Wendroff's theorem [58) concerning the nature
of solutions to HCLs, the cquations are always differenced in conservation form.

Theorem 1 (Lax and Wendroff [58]) If a difference equation is in conservalion
form and is consistent wilh the original conservation law as well as slable, it converges
to a weak solution of that conservation law.

With this form, the solutions converge to solutions which satisfy the Rankine-Hugoniot
conditions. Conservation form implies that quantities are conserved numerically, as
they are physically, thus when a domain is subdivided into a set of subdomains
(control volumes), the amount of material exiting one subdomain exactly enters the
subdomain adjacent through a common interface.

i
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Figure 2.4: The spacetime grid is shown with the grid interfaces denoted by the
dotted lines and the computational nodes by the dark circles.

These schemes can be expressed in the following form,

wpt =u) -0 (f,y - j,_,) =0, (2.14a)

in one dimension where o = At/Ar, or more generally
| . |
W =l - At YAu=0, (2.14b)

for a homogeneous governing equation. Here j refers to the index of a control volume,
n to the time level (see Fig. 2.4), and f is the numerical flux. In the general case
V, is the cell volume, A, is the area of a face of that volume with a total of N faces
(sides) to a volume. The above equations can also be written in a semi-discrete form

Ou A .
W= -‘Z'gﬁf =0 (2.146)

The determmauon of the numerical fluxes, f is at the hun of lhe subject 'l‘o
msure that the solutions are consistent then -

flu,u,...,u)=f(u) . | (2.15)

Given this condition with the stability of the ove:dl solution procedure implies the
convergence of the scheme by the Lax equivalence theorem (31, 67).

Theorem 2 (Lax equivalence theorem) Given a well-posed initial value problem |
and a corresponding numerical approzimation thal is consistent, then stability is a
necessary and sufficient condition for (equivalent to) convargence.
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Unfortunately, this theorem can only be applied to the linear types of schemes like
those described in Chapter 3. Nevertheless, this throrem is important and can be used
to analyze linear methods that are the building blocks of more advanced methods.

As a measure of the accuracy of the solution, 1 use the Taylor series to act as a
measure. This meanr that if a method is stated to be r** order accurate, the leading
term in the truncatior. erroris O (Az"*'). Later, the problems associated with this are
discussed. In general, the general Taylor series driven difference approximations are
used in favor oi a polynomial approximation driven approximations (although Taylos
series are oftcn used to measure the polynomial's accuracy). This is notivated by the
course of recent developinents in numerical algorithms for solving HCLs. One caveat
with the usc of Taylor serics based mecasures of accuracy is that discontinuities make
the concept of accuracy somewhat meaningless at those points.

The accuracy of solutions can also be measured in terms of norms. The three
' most commonly used norms are the Ly, L; and L, (also known as the maximum)

norms. These are defined by :

L.=f:'—}'. | '. (2.16a)
ne(£4) . o
= 1 . 2.16
1 ~N| ob
L = sup(le;]) (2.16¢)

where
- fJje20ct _ propprOs.

given an exact solution.  Although this gives a quantitative measure of algorithm
performance, the qualitative measure of performance is also generously used. These
two means of mcasure should provide a complementary means of determining solution
qualities.

2.4 Applicability to Other Disciplines

The successful solution HCLs is vital to a large number of endeavors. This general
problem is present in any system where fluid flow is present (with the exception of
Stokes flow or subsonic potential flow, but these represent simplifications of the ac-
tual physical :='stem). Thus the range of applicability is quite large. The methods
discussed in the next chapter have heen found to be uscful in the solution of acrody-
namic flows (43, 45, 36, 75] where they are currently widely used. These methods (the
modern advection solution algorithms) are also finding use in turbulence modcling.
The process of large-eddy sinulation [76] involves the solution of fluid equations with
only the laige (kinetic energy carrying) structures being resolved. Recently, it has
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been proposed that modern advection algorithms (see (‘hapter 4) could serve as a
turbulence model [77, 78, 79].

Methods of a modern type are also finding use in the solution of incompressible
flows (the flows above are primarily compressible). The solution of this type of prob-
lem is largely dominated by first-order schemes [1), but recently second and third
order methods have hecome more widely used [80). Leonard (81, 82, 83, 84) has de-
veloped a scheme based on his QUICK! scheme, which has a great deal in common
with some other 1:iodern algorithms. This method or one like it has the promise of
greatly improving codes currently used to compute a variety of industrial flows. Other
workers have also applied other modern methods to more classical incompressible flow
soivers [R5, 86, 87).

The solution of these equations is also very useful in astrophysical fluid dynam-
ics [88. 89, 78, 90, 91, 92]. The physical systems in astrophysics place severe demands
on numerical methods {27], and the methods must be carefully designed to compute
solutions with needed accuracy. Oiher flows of a geophysical nature are amenable to
modern approaches to solving advection [46, 93, 94).

The solution of wave equations is important in applications which usc a fully
Lagrangian formulation [95). In these methods, the grid flows with the fluid thus
leaving only sound waves explicitly in the equation sct. The solution of this sort of
system is amcenable to similar methodology as other wave equations. The Lagrangian
formulation often rids the problem of the linearly degencrate eigenvalue(s) (they go
to zero), but still leaves genuinely nonlinear eigenvalues in the set. Thus the primary
approximation problem still exists.

As mentioned earlier, the hyperbolic heat conduction problem is open to numerical
solution by methods applicable to HCLs. The quality of the solution is significantly
enhanced through the use of modern algorithms [96). Also mentioned carlier was the
work of Brio and Wu [15], which solved the MHD equations. Using modern algorithms
new phenomena were discovered, which may have been validated by observations [16).
Also along these lines is the solution of problems in clectromagnetism by methods
developed for compressible acrodynamics (97, 98] with promising results.

Several uses in nuclear engineering applications requiring thermal hydraulic anal-
ysis can be found in [99, 100, 101]. These methods are also showing a great deal of use
in the modeling of solid dynamics under severe physical conditions [102] where the
solid behaves in a fluid-like manner. Additional applications can be found in reservoir
modeling {103, 104, 105] with implications to petroleum recovery.

In the next chapter | explore some of the classical numerical methods for solving
conservation laws and the problems associated with them.

VThe QUICK scheme uses a third-order (spatially) upwind algorithm based on a finite difference
stencil containing the one downwind point and two upwind points. It can also be derived by means
of quadratie polynomials
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Chapter 3.
Classical Methods for Conservation Laws

The present contains nothing more than the past and what is found in the effect
was already in the cause. Henri Bergson

3.1 Introduction

In this chapter, several of the most important classical methods for solving HCLs is
covered. These methods although outdated by modern standards still comprise the
backbone of most modern methods, and contain some of the essential concepts for the
successful design of numerical schemes. This chapter discusses the basic construction
of these methods, their stability and other pertinent propertics.

Errore in the numerical solution of hyperbolic problems are generally classified as
being of either a damping or a dispersive variety. As is scen below, a useful numerical
scheme must contain some minimal amount of dissipation to remain stable and pro-
duce physical solutions. This dissipation damps out error which would otherwisc grow
in an unbounded fashion, but it also destroys many features of the flow field. Lack of
sufficient damping results in dispersive errors that can cause unphysical maxima and
minima to be created in the soiution by the numerical scheme.

Phase crrors result in information being transported at a numerical velocity below
or above the true velocity of this information. These crrors are depicted in Fig. 3.1.
Typically, VonNeumann stability analysis {31, 4, 35, 37] is used to analyze these
errors. The process consists of replacing the dependent variables by Fourier series,
¢’ drfining the new time value of the variable to be cqual to Fourier scries at the
old time multiplied by a function A or the amplification factor, in general '
=g (u:,uz“) =A™ =g (c"“"', Ac“”"') . (3.1)
Generally, the expression of A is a combination of real and imaginary trigonometric
terms and is transformed to extract useful information. This is accomplished by
scparating the functional form of A into two picces: an amplification factor and a
phase angle,
A(k0) = |G|, (3.2)

where G is the magnitude of A and ¢ = tan™! Im(A) /Re(A) is the phase angle. For
stability, (7 must be less than or equal to one for all k@, but this implics damping.
Small valiies of 7 imply excessive damping. For the scalar wave equation, the exact
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Dispersion Artificial Dissipation

Lagging Leading

Figure 3.1: Here the three main typces of crrors in the solution hyperbolic initial
value problems are shown: artificial dissipation, dispersion, lcading and lagging phase
crrors. (The exact solution is in the lighte: pen and the rcptcscnlahon of the numerical
solution is in the darker pen.)

phase speed is known' so that the ratio of this to the numerical phase speed czn be
taken. If this quantity is less that one the error is lagging, if it is greater than one
the crror is leading (see Fig. 3.1). Thesec errors havc a spectrum of values which can
have a large range of values. :

All the methods discussed in this chapter are cxplmt in nature and are thus limited
by a stability condition (some multiple of the Courant-Friedsichs-Lewy (CFL) (52]
number). This number, v = |a| At/Az, is a dimensionless value which describes the
proportion of the domain of dependence covered during a time step (see Fig. 3.2).
These methods are: the central difference method with or without artificial diffusion,
upwind differencing, the Lax-Friedrichs method, the Lax-Wendroff method, and the
Beam- Warming scheme or second-order upwind differencing.

3.2 Central Differencing and Artificial Diffusion

The simplest type of numerical scheme seems to be a very natural manner to deal with
~ the hyperbolic equation. This method deals with approximating the first derivative of
the flux function with a centered spatial difference which has second-order accuracy
and marching explicitly in time and is known as the forward time-centered space
(FTCS) scheme. This method can be written

u* =u} - ; (f;‘u - f;"-l) ' _ . (3.3)

U ke rxact wavespeed 1s v whete v s the CFL number
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Figure 3.2: An inteipretation of the CFL limit si:etched in the z — t planc for point
Jj- For an explicit calculation, information shoul. not be transported more than one
mesh interval from its origin or in othe: words the adjacent grid points must lie on
or outside the domain of dependence (Az > aAt). If waves from two different grid
points are not allowed to intcract, the restriction becomes twice as severe.

where ¢ = At/dz for uniform grid spacing. I his is cquivalent to saying that the
cell edged fluxes are the arithinetic mean of the neighboring grid points or taking
the fluxes to be a linear interpolation of the initial data. Thus the numerical flux
functions are

Jruy = %(/; ) (3.4)

Unfortunately, this method can be shown to be unconditionally unstable, with
crrors growing in an unbounded manner. This behavior can be secen in Fig. 3.3
plotted after 20 time steps showing the impending disaster.

Through the addition of artificial dissipation [53, 31) this solution method can
be resurrected to some degree. This requires the addition of a term on the right
hand side of the equation which arts in the same fashion as physical dissipation. The
cocfficient is somewhat arbitrary, but too little dissipation results in a more stable,
but low quality solution. Too much diffusion? can either result in destroying some or
all of the fea ures of the solution or causing a ncw instability because of the stability
restriction implied by the explicit diffusion equation. Results ucing the FTCS scheme
with artificial dissipation arc shown in Fig. 3.4. The dissipation hus largely cured
the instability, but now the solution exhibits a large leading phase error. Smarter
forms of artificial viscosity are used (see Jameson [106) for example) with scceptable
performance, but the methods are always somewhat ad hoc in nature [107]. '

2The terms difflusion and dissipation ar- used inmzlnngésb!y in the text. They shoald bé ticated
as synonyims
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Figure 3.3: The results found using the FTCS scheme show the growth of instabilities
and their unbounded growth. (The exact solution is in the solid pen and the numerical
solution is denoted by the circles.)
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Figure 3.4: The results found using the FTCS scheme with an astificial Jiuipation .
coeficient of 0.1 (a = 1 and v = 0.5).
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3.3 Upwind Differencing Type Methods

The behavior discussed in the last section is clearly unacceptable although useful
computations can be performed using artificial diffusion becausc it does converge
to the correct solution {108]. In [5§] a new more physically based approximation is
described. This :nethod forms the basis for a large class of modern numerical methods
in Chapter 4 (see Fig. 2.1).

This method is first-order accurate in both time and space, and takes the direction
of the wave propagation in the problem into account when computing the cell-edge
fluxes. There are scveral ways to derive this approximation, which all have relative
advantages. Typically, thir scheme can be derived with a first-order Taylor series
approximation which is biascd by the direction of the flow locally. This results in a
difference scheme for (2.1) like

ndl

u;? =u) —oa (u; - u;_.) . (3.5)

where a > 0, this can also be written i conservation form by stating
| f"; = au; .
Another way to write the ccll-edge fluxes is [109]
/Hi =2 [ st 7 = lal ( Ujer = )] ' (3'6)
where f, = au}. This form is advantageous because it shows the magnitude of the

diffusion associated with the spatial differencing. For the upwind differencing, the
numerical diffusion coefficient is

&P = o] %‘- . (3.7a)
The effective induced viscosity is
¥ ot "" 13z, ), (3.7b)

which reflects the fact that the upwind diﬂ'etcncing recovers the exact solution to the
scalar wave equation if ¥ = 1 [30]. This term can be determined from the compatison
of upwind differencing with the FCTS scheme assuming the Lax- Wendroff scheme
has zero diffusion (not a particularly good assumption).

Remeark 3 The first term for the numerical diffusion is related to the form of the
diffusion operalor present in the delermination of a cell edge numerical flur. It is
Jormally defined as the difference between the a second-order central difference ap-
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Figure 3.5: The solution for first-order upwind differencing shows the large amount
of diffusion present with this algorithin (a = | and v = 0.5).

prorimation and the numerical flur in a given scheme. The cffeclive induced viscositly
1s from the numerical error of the scheme and is the coefficient on the second order
spatial lerm.

Remark 4 Another way to derive this scheme is (o assume thal each compulalional
cell is interpolated by a precewise constant profile with the numerical fluzes being based
on this reconstruction. Where u is changing, the profile is discontinuous at the cell
edges and a solution can be found by solving a local Riemann problem [56]. This is
the basic concept in (Godunov's method. For the scalar wave .;uation this resulls in a
~scheme identical 10 the one presented above.

Figure 3.5 shows the results of using first-order upwinding. The solution’s peak
is severely clipped and the profile is diffused both in front of and in back of the
exact solution. Jt should also be noted that the solution remains positive definite
throughout the computational domain. '

3.4 The Lax-Friedrichs Method

The Lax-Friedrichs (55] (sometimes Lax’s) method was derived as an answer to the
instability of the forward-time centered-space (FTCS) algorithm. It has the following
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form,

2

which can be rewritten in conservation {.1m as,

ujt! = ; (u3-1 +6}) - 0a (s - uily) (3.8)

g =gt -2 -w)] (3.9)

Looking at the forms of Lax’s method and upwinding one can see that the diffusion

portion of the flux is always greater than or equal to that found in upwinding. Thus

~ this method has a larger amount of diffusion associated with it than the upwind
differenced method. The numerical diffusion is

Az ’ ' _
dt¥ = o (3.10a)

and again the effective induced viscosity is
Az
LF _ 2241 - .
d (1-v), (3-10b)

because this method also produces an exact solution for v = | (see Remark 3).

Figure 3.6 shows the solution obtained with this method, although the solution
is positive definite, there are several disturbing features to the solution. One is the
terracing of the solution, which gives way to a sawtooth-like structure at the peak of
the solution. This is due to the algorithms form which does not require the partici-
pation of the information for the j** cell at time step n for the solution of the n + 1
time step of that cell.

Remark 8 Interpretcd geometrically, the Laz-Friedrichs method is a sort of an “ullra-
upwind” method because the solution is over biased (a cocfficiznl graler than one) in
the upwind direction. In recent years, the Laz-Friedrichs inethod has been wsed with
. @ slight variation. The magnitude of the dissipation in the fluz is set to the absolute
value of the largest local characleristic speed. For a scalar wave equation, this is iden-
tical to the upwind method, but for systems of equations this is much different (this
is discussed in more detail in Appendiz B).

3.5 Lax-Wendroff Type Methcds

The Lax-Wendroff method (58] is the canonical classical second-order method. This
method produces second-order solutions, but with spurious oscillations near discon-
‘tinuities, thus raising the possibility of producing negative values of positive definite
values such as density or pressure. From the standpoint of algorithmic description,
geometric depiction is pasticularly useful. Normally, the method of Lax-Wendroff is
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l"ign"m 3.6: The solution for the Lax-Friedrichs method shows the extreme amount
of diffusion present with this algorithm. Also noticeable is the terncmg and the
sawlooth structure in the solution (a = 1 and v = 0.5).

described as a finite-difference algorithm; however, it also can be described geometri-
cally. Figure 3.7 gives a qualitative description of the method.

It is well known that the second-order central difference scheme with forward
Euler time differencing is unconditionally unstable. This can be easily verified with
VonNeumann stability analysis, but | proceed from a different standpoint. This is
mativated by the desire to have a more heuristic explanation for this well-known
phenomenon. First, some nomenclature needs to be introduced. The flux functions
for difference schemes are functions of the dependent variables and can be written in
terms of interpolating polynomials. Thus, given a piecewise polynomial, P, (z), the
flux functions can be written

f(v) = [P (2)] . (3.11)

~ With this definition, the problem reduces to approximating the dependent variables
on a grid and computing the value of the interpolant at cell edges.

Returning to the second-order central difference, it can be written as a piecewise
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Figure 3.7: The Lax-Wendroff method can be viewed geometrically as a linear inter-
polation of the initial data with a time centered correction (o: timne averaged) to the
cell edged state. If one thinks of the form of the exact solutinn to the scalar wave
cquation, u (zr,t) = u, (z — aAt), thi: form makes rense.

. polynomial on the interval z,_;,x,,*] and has the form

4

uy+3,,4 (x—z;) ;z€ [z,.z,-,;]

P;i(z) = § ) . (3.122)
‘ u,+s,_b(z-z,~) i Z € lz,_§,z,-] '
h
e sy =7l g s, =t 7Y (3.12b)
=3 z, - z)_' ' J+§ zl’l -_— I,

This functional form is both C° and C" continuous. Evaluating the flux function at
-1 and z, e the second-order central difference scheme is recovered. This func-
tional form takes absolutely no consideration of the disection of the flow in the problem
in finding the numerical flux functions. Perhaps this is a more pajatable physically
based explanation for the unconditional instability. The method produces spurious
oscillations because the solutiuns computed with these flux functions can lie outside
the given values of u.

By considering the fluid moiion and in a Lagrangian scmc computing the timre-
centered cell edge positions, which is for the right hand side cell edge

alt
3,_,:21‘;——-2—-. (1‘?&)
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and for the left hand side cell edge

aAt
Ty =24 = 5 - (3.13b)
luserting these exvressions into the second-order central difference polynomials gives
the Lax-Wendroff scheme (for a scalar equation). This method is stable for Aa <
1, but still produces spurious oscillations. This stability is solely the result of an
“upwind” centered app-oximation, which now is dependent on the flow direction

rather than completely centered in a spatial sense.

Remark € This differs from the account of the Laz-Wendroff method given by LeV-
eque [40] that requires the direction of the flow to be known in order to define the

interpolation.

The original Lax-Wendroff method (58] uses a second-order accurate Taylor series
approximation in tiine to stabilize the FTCS method. The original derivation was
based around the following ideas: given a second-order Taylor series in time

+ 0lu +0 (Af') (3.14a)

u(t+A0)=u(t) + = ‘7 7 |

and making substitutions for the time derivatives defines the method. Using the
jollowing relations

du af
F il (3.14b)
and
v _ 9 Bu)_a(af 8( (7u_3( du) 9 8]
o " \ot) " \"dz) "\ "9:) "3z \""01) "3z \"9z) ’
(3.14¢)
gives the final form
af af |
u(t+ At) =u(t) - e ‘ + Jz (da)l: + O(Als) ' (3.14d)
or
u(t + At) = u(t) - aj + az( ’%) +O(At’). (3.14e)

The derivatives are all approxlmated with central differences. The numerical flux
functions can be written (110}

; l
Jiay =3 (1, + Le1) = 30 (00 = )] (3.15)
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Figure 3.8: Lax-Wendroff’s method shows a sharp capture of the discontinuity, but
the solution is polluted with dispersive ripples (a = | and v = 0.5).

which shows that the numerical diffusion coefficient associated with this method is

3
4t = aazAz ' (3.16a)
or an effective induced viscosity of
¥ =0. (3.16b)

Again, as with the past two methods, the Lax-Wendrofl method reproduces the exact
solution when used on the scalar wave equation and v = 1 (ser Remark 3). These
results do not suggest that this is always possible in the general case; however, they do
suggest that the CFL number should be maximized to the extent possible for quality
solutions. '

The solution found with this algorithm is shown in Fig. 3.8. It shows a shasp
location of the discontinuity, but the solution shows a great amount of dispersion and
negative values. These values may not be physical as discussed easlier and are aes-
thetically unappealing. There is also a fairly significant amount of numerical diffusion
associated with the fronts. Typically, the Lax-Wendrofl method is augmented with
artificial diffusion to combat ripples {111, 112}.
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3.5.1 The Two-Step Lax-Wendroff Method

The Lax-Wendroff method has been reformulated as a two step method, first by
Richtmnyer {113] and then by Burstein {114]. It can be written as follows,

n ] ]
u::: =2 (u;‘ + ";.“) — 2% (“;H - “:) ' ' (3.17a)
and a second step
i = - aa(u} - ) (3.17b)

This form is already in conservation form. This method is equivalent to the original
Lax-Wendroff inethod for a scalar cquation (proven through simple backsubstitu-
tion). This formulation has been useful in simplifying the implementation of the
Lax-Wendroff method on systems of equations. It may be useful to consider this
form (or something similar) in future method development.

3.5.2 MacCormack’s Method

MacCormack's method [115] is another derivative of Lax-Wendroff's method and
produces similar results. The form of the solution algorithm is as follows,

@y = u) — Aa(u)yy - uw}) , (3.18a)
and a second step
w = % W) + iy = Aa (i, ~ §,-1)] . (3.18b)

In this form, the Lax-Wendroff method appears to be a predictor-corrector method.
This method has been particularly important in aerodynamic application where it
has found widespread use.

3.6 Second-Order Upwind (Beam-Warming Method)

One classical cure for the problems of the Lax-Wendroff method is to make a second-
order scheme with an upwind biased stencil®. Using the form (3.12a), this scheme
can be defined by setting

=B Yt (3.19a)

ifa>0and
5,4y = ot (3.19b)

¥The term stencil refers Lo the gridpoints used by & scheme.

26



l 2 \ : ﬁ‘*‘ L am
l L 3 3 . 3
0.8 "r P ° T
4 ° s
y 061 4 1
041 ; T
°
021 ® i T
o * o
OM— L-—.va»
0.2 ' -+ + -y
0 20 40 60 80 100
X

. Figure 3.9: The Beam-Warming method shows a sharp capture of the discontinuity,
but the solution is polluted with dispcrsive ripples, but the orientation of the ripples
is different than the Lax-Wendroff solution (a = 1 and v = 0.5).

if a < 0. With time-centered differencing this is the Beam-Warming scheme [116].
The solution of the test problem is shown in Fig. 3.9.

The methods discussed in this chapter do not cover all “classical” CFD methods,
but represcnt the most commonly used. The concepts presented above also represent
the basic means through which modern methods are based. The methods discussed in
this zhapter are linear. Linea:ity is expressed in the application of the finite difference
stencil to the governing differential equations. In all the classical methods, the stencil
it identical for all grid points. The importance of this will become clear shortly.

In the following chapter | describe the basics of high resolution upwind methods

- for conservation laws. Rather than a fixed finite difference stencil, the methods in-
troducnd in the next chapter use adaptive stescils that change as the flow changes.
The methods of this chapter are laid as the fosndation for what follows.



Chapter 4. ..
An Introduction to High-Resolution
Upwind Shock-Capturing Methods

Linearity breeds contempt. Peter Laz

4.1 Motivation

To start the discussion of high-order methods in CFD for solving HCLs, | thought
a quick motivational introduction is nceded. The first modern method discussed in
detail here is that of Godunov [56, 57], which is at the root of most recent methods
(see Fig. 2.1). One might belicve that using a high quality method like Godunov's
would do the job (if more detail is nceded, use more grid points). To illustrate why
higher order methods are worth exploring, | make use of a test problem used by
Woodward and Colella [44). This is an interacting blast wave problem described in
more detail in Appendix A.

In a one-dimensional domain, the density is sct to unity everywhere with the fluid
at rest, the left most ten percent of domain has pressure set to 1000, the right most
10 percent has a pressure of 100, and the rest of the domain set to 0.01 with ¥ = 1.4.
Two very strong shocks form and eventually interact forming a combination of shock
waves, contact discontinuities and rarcfactions. This turns out to be a very stringent
test of a numerical metho,d and it is very difficult to resolve all the phenomena
involved.

Figures 4.1 and 4.2 show the results for density using Godunov’s method (Sec-
tion 4.3) and a sccond-order Godunov (Section 4.4) method respectively. The first
order Godunov's method uses 5 times the computer memory and 35 times the cem-
puter time to solve the problem yet the second-order solution is of much better quality
and is closer to the -onverged solution’. This point has been raised in [89), in a simu-
lation of hydrodyn-mic phenomena in the 1987A supernova. The cost and complexity
of the partial parabolic method (PPM) they used allowed the resolution of phenom-
ena in their simulation. With other methods the solutions could not be attempted
because of limitations on computer memory. It should be pointed out that as the
dimensionality of the problem increases, the advantage of high resolution methods

"This is in line with the remarks found in [89). There it was stated that high resolution second-
order (or higher) methods were 15 to 30 times higher in resolution than Godunov's method for
rontart isenntintities
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increases. Things like adaptive griding could also improve matters considerably al-
though a combination of adaptivity and high resolution appears to work best [117).

Remark 7 The use of 10 times as many grd points 1.:plies through the action of
the CFL stability criterion that 10 limes as many time s»i.ps be used for a given
calculation. This equals 100 limes as many yrid points times time sieps, which in furn
indicates that the high order method is about three times as ezpensive as Godunov's
method on a per grid poinl per time step basis. From the perspective of performauce,
al 15 times the resolutior. 1the high resolution mcthod is 5 times cheaper per grid point
per time step. If these resul's are applied to mullidimensic aal problemas, the differences
become more profound. R

4.2 Introduction

‘The work of Godunov [56) has led to many striking advances in the numerical solution
of (2.1). The unique nature of Godunov's work was recognized by van Leer [118]). Ina
serirs of papers, he (119, 120, 60] spearhcaded the modern development of HOG algo-
rithms. Godunov's method and van Leer's extensions use polynomial representations
of the conserved variables in each grid cel! in the process of computing the solution.
These piecewise polynomials can be discontinuous at grid cell interfaces and as such
require some closure relations at these interfaces to compute the numerical fluxes.
This closure uses the local solution to a Riemann problem (Appendix B) though ei-
ther an “exact” (41, 60, 121, 122, 123, 124] or an approximate [125, 126, 63, 127, 128}
Riemann solver.

Colella and Woodward [122] advanced the method developed by van Leer in theis
PPM. This method is still considered a premier method for computing the solutions to
(2.1) [129]. Several theoretical advances have been made as well as the more practical
ones. Harten's theory of TVD schemes (130, 61) (Section 4.5) made great strides
toward understanding the theoretical propertics of methods like van Leer's and those
discussed bzlow.

Several different varieties of TVD methods have been developed: the modified flux
formulation due to Harten and severui symmetric TVD schemes. Roe introduced the
symmetric form of TVD scheme [131]. Sweby {132] and Davis [133] also presented
methods of the same general form. These were all derived as a Lax-Wendroff method
augmented with a nonlinear upwind biased dissipation term. Yee [134] christened
these schemes as symmetric TVD schemes in her paper. The general form of sym-
metric TVD schemes can be viewed in diffcrent ways: as an advanced form of astificial
diffusion, and as a Lax-Wendroff [58] with ar additional dissipative flux to ensure a
TVD solution. Along other lines, Goodman and LeVesque (135] took a geometric

view similar to van Leer’s work in deriving a ‘TVD method.
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Figure 4.1: The density computed with Godunov's method using 10,000 grid points
shows the genceral structure of the solution; however, the solution also shows significant
smearing behind :he contact discontinuity at r = 0.6. The peaks at z 25 0.65 and
r = 0.80 are clipped. (Ar = 0.01,v = 0.99,¢ = 3.80.)
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F igﬁrc 4.2: The density computed with a second-order Godunov method using 1000
grid points shows a nearly converged solution. Much of the smearing and clipping
i sent in the first-order solution is gone. (See Woodward and Colella 1984 for the

ronverged solition. )
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A limitation of these methods is that they are limited to first-order accuracy in
the maximum error norm. This is due to the action of the flux or slope limiter used
in arsuring the TVD <quality of the solutions. To increase the accuracy of this sort
of method, more elaborate numerical algorithms have been developed in the past few
yvears. Among these are the uniformly non-oscillatory (UNO) scheme of Harten and
Osher [136], which is second- order accurate in all norms. Essentially non-oscillatory
{ENO) methods are described in a serics of papers {64, 137, 65, 66], where these idecas
have been extended to arbitrarily high order of accuracy (Section 4.4.2). These ideas
are also making their way into multidimensional algorithms [138, 139).

Another modern advection algorithm also can be viewed along these lines. Perhaps
the first modern algorithm to recognize the necessity of nonlinearity in the difference
scheme was the FCT method as introduced by Boris and Book [59] (Section 4.6).
This method was develcped with the recognition of the theorem of Godunov,

Theorem 3 (Godunov [86]) No monolone numerical algorithm for solving (2.1)
can be both lincar and second-order accurale.

This does not preclude the possibility of producing a “monotone” second-order scheme,
but simply state that such a method cannot be linecar in nature. Thus the FCT is
designed as a nonlinecar blending of high- and low-order numerical fluxes, which en-
sures the lack of dispersive ripples. In a series of papers [59, 140, 141, 142, 62) this
method has been revised and extended.

Digressing slightly, there appears to be a schism in the literature between the TVD,
HOG and ENO type methods and the FCT methods. Authors doing rescarch on each
method usually mention the other methods, but the synergism ends there. It is often
stated in the FCT literature that the TVD type methods require Riemann solvers and
as such arc horrendously complex in comparison to FCT. It is my contention that
this is simply not truc. Underlying cach method is a scheme for scalar advection,
which is at the genesis of more complex development. In extending the methods
to systems of equations, the TVD type methorls use Riemann solvers, which have
many exceptional theoretical and aeszhetic appeals. The extension of FCT, on-the-
other-hand, is usually extended in what seems an ad hoc or naive (see Section B.3.4)
formulation (143, 144].

Borrowing from [15] one can sort of “sce” how various schemes are related pic-
torially. This is done in Fig. 4.3. If one imagines some sort of space of schemes
with monotone schemes, Sy being the most restrictive and the space of all transport
schemes, St encompassing all methods. The various methods can be seen as a set of
overlapping spaces. The space of all TVD methods is Syvp U Sy and ENO schemes
are tne union of the TVD space and that labeled Sgno.

Recently, | have thought a lot about the philosophy related to the design of high

resolution schemes and | believe these philosophies can be classified as follows:
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Figure 1.3: In this diagram a rough classification of modern numerical schemes is
shown. Sy is the space of upwind methods and Sc is the space of centesed schemes,
the other terms are explained in the text. (adapted from (45, 145).)

1. Artificial Viscosity: There are those that believe that the high-order scheres
arc simply fancy artificial diffusion piescriptions. This is largely a product of
the TVD-Lax-Wendroff {133, 131, 132} and the symmetric TVD [134) methods.

2. Hybridization: The FCT [59, 140, 141, 142, 62 and Hybrid [146) mcthods are
most easily classified as combinations of first- and higher-order classic schemes.

3. Mathematical Theory: Harten [130, 61] and Harten et. al [64] have produced
a mathematical framework which is useful in producing rigorous proofs and
bounds on the behavior of these schemes (TVD) and a vague generalization to
less restrictive schemes (ENO).

4. Interpolation and Advection: This was given by van Leer {120, 147] (based on
the work of Godunov) and then extended in PPM. The method seems some-
what heuristic in nature, although it works well. TVD theory aids and expands
this train of thought. which works well for conceptualization of the schemes.
The ENO algorithms extend tkis view to a broader class of methods, but at
this point do not include the breadth of possible methods. In a recent paper,
Harten brings the: arguments of semi-Lagrangian method [112] into the arena of
high-resolution methods. This should be clarified by the fact that unlike those
methods used in metcorological (148, 149] flow by » < 1. Despite this kind of
different viewpoint, the results are generally similar, although the meteorolog:
ical schemes are not conservative in nature. Thus they are not appealing for
computations of discontinious solutions.

At some point, these various approaches should be equivalent, which would result in
an increased synergism between methods and case of analysis.

Remark 8 In [149] it was noled that van Leer began Inoking at semi-Lagrangian
nethods early in his studies, but dropped them from considciution because of their
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Monotone

Not Monotone

Figure 4.4: The initial data is denoted by the solid line while the dotted line shows
the solution at some advanced time on a periodic domain. The upper figure’s solution
is monotone because the extrema in the advanced time solution are bounded above
and below by the initial data. The lower figiire’s solution is not monotone because
new extrema exist in the solution.

lack of conservation.

A key concept in this entire discussion is that of monotone convection®. This
means that the solution is a physical solution for physical initial data and that it
does not create new extrema in the solution. [his is depicted graphically in Fig. 4.4.

Definition 1 (Monotone Numerical Advection [151]) Monotone numerical ad-
vection is defined by a scheme which is a combination of coefficients of the local data
which are all positive. Consistency requires that some conservation principle be en-
forced i.e. the coefficients sum to one. This also means that the numerical scheme

does not introduce new extrema into the solution.

For the remainder of the presentation, the following nomenclature is used: A, ju=
u;1 — ;. A conservative finite-difference solution to (2.1) using a simple forward

Fuler time discretization s

utlh =y — rf(f' - fr ) ) (4.1)

ZDefined rigorously, monotone convection implies that the finite difference scheme is first or-
der [73]. Also some work shows that as currently defined no scheme can be TVD in more than one
dimension [150].
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The temporal spacing is At and Az is the spatial mesh spacing. The superscript n
refers to time, ¢, n + 1 refers to the time ( + At, and the subscript j refers to space
with j being a rell center and j £ 1 being the cell edges. The construction of the
numerical fluxes f )2} is at the heart oI’ this subject. The cell edge flux can be defined
as

j,«yl = (l) + I)H) + é,*% ’ (“'2“)

where ¢ is a namerical dissipation term. For a system of equations the flux is written
. l
F,’§=§(F,+FH.)+0";, (4.2b)

where F and @ are vectors, but arc defined similarly to the single equation case. For
instance, the first-order donor-cell flux can be written

H} (ll +Il“ , N}IA;o’“) v | (4.3)

thus
rc

l

N 3 l"u}IAuP‘-

Remark 9 When numerical schemes become nonlinear in nafure and/or are applied
lo nonlinear problems, standard means of analysis are not typically valid. New ap-
proaches to method analysis have been developed, bul are nol as mature as classical
methods. LeVeque [{0] gives an overview of this topic. Much of the modern analysis
is based on “compensaled compaciness” as used by DiPerna [152, 153] in his proofs
of conrergence. Nonlinear dynamics may also yield uscful means of analysis [154)].

4.3 Godunov’s Method

I have already visited Godunov's method in the Section 3.3. For a single scalar
~ equation this is simply the upwind method described there. For nonlincar problems
this is not so straightforward. The key point in constructing a Godunov method is
to use some sort of Riemann solver. Another consideration is entropy satisfaction
of the solution [155]. This generally means that the solution must contain sufficient
numerical viscosity to insurc physical solutions.

The following algorithm gives a general outline for Godunov type methods.

Algorithm 1 [Godunov’s Method) |
1. (Initialization Step) Average the initial distribution over the computational cells
1 5,40,2/3

0= — u(r)ds. ‘ (4.4a)

u
-‘3)‘ l,-A’.’z
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2. (Reconstruction stcp) Reconstruct the initial distribution as piecewise polyno-
mials over the computational cells

u,(z) = P, () , (4.4b)

where P, (z), z € [z, - Az,/2,z, + Az,/?2] is a polynomial in cell j.

3. (Solution in the Small Step) Solve the initial value problem at cach cell interface
where discontinuities can exist

u(z,t)= E(z,t - t")-u(x.l") , (4.4c)

where E (z,t — {*) symbolically represents thc evolution opcutor given by the
solution to the Riemann problem.

4. (Averaging Step) Reaverage the solution over the grid cells given the solution
operator in the previous step.

nel _l_ 248,2/2 u#l.
u; W /-,-A,tl‘l u (z.t )dz . (4.4d)

& Go back to the reconstruction step.
This process is shown schematically in Fig. 4.5.

Remark 10 Osher [155] defined a Godunov flus for scalar equations as

fa) if u, < u,yy then ’c” = min(u),u € [u;,u;43)

' (4.5a)
| (b) ifu; > u,4y then f,c,; = max (u),u € [u;,u;41)
and the inequalily for an entropy satisfying fluz is
() if u; < wpas then £,y < 15, (a5b)
(8) ifu, > ujyy then f 4y 2 ],.‘1’

For the scalar equation, this Godunov fluz is the least diffusive entropy salisfying
Jluz. Thus for the case of scalar equations one can show whal the appropriale enlropy
inequalities are. This inequalily can be wrillen :

3‘.9"(“;0! = “)) [i,o’ = I(“)] S 0 W8 E [“)o “Jﬂl . ("5‘)

Osher defined schemes which meet the entropy requirements as “E-schemes”. This
concepl has proven to be imporiant in the development of higher arder schemes which
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Solution in the Small

RVAVS A

Reaveraging

Figure cl;.':: The following steps ase shown: averaging and reconstruction, solution in
the small, and reaveraging in this schematic representation of Godunov's method
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produce physical solutions. It is common prartice lo develop the higher order schemen
with an E-scheme as a buslding block.

This algorithm can be formulated in several ways: in a fixed or Eulerian coordi-
nate system or in a moving or Lagrangian coordinate system. With the Lagrangian
formulation, the common practice is to set the coordinate frames speed equal to that
of the flow. Another common practice is to compute solutions in the Lagrangian
frame and map the results back to an Fulerian grid. For the Eulerian algorithm, the
solution in the small is done in a fixed coordinate frame so the averaging step is a
simple one step process. In the Lagrangian algorithm, the averaging step takes place
in two steps: first an average in the Lagrangian frame and then a remap to the fixed
Fulerian grid.

The averaging step can be simplified with the divergence theorem that allows the

" integral ae
| 2,4012,/3
el s+l
! Az, /:,-A:,n " (z,l )dz )
to be transformed to '
=y =A(fay - foy) | (4.6)
where A = AMt/Ax and
. l 'pol
hey =25 ). j(zM,:) de . (4.7)

This formulation is just like the nor:nal finite difference equations for a differential
equation in conservation form. For the solution in Lagrangian coordinates, the spatial
variable r in the above equations is replaced with £, the mass variable. The remap
step of the Lagrangian Godunov also can be expressed in these terms. In this step,
the solution in the Lagrangian cocidinates is mapped onto an Eulerian grid. This can
be expressed as the advection of che conserved quantities through the cell boundaries.

This reaveraging step (see Appendix B equations (B.3a)-(B.3c)) can be derived
from the concept of operator splitting [156). The Lagrangian step is the solution for
the Euler equations for the sound wave related transport and the remap is the solution
for the advection related transpost. This concept is at the genesis of the Arbitrary
Lagrangian-Eulerian algorithms [157], but these differences are morc philosophical
than substantive.

The remapping procedure must deal with scveral specific possibilities, as shown
in Fig. 4.6. Carrying oul the summations over the Eulerian grid cclls reveals that the
use of a simple upwind difference formula suffices to carry out the remapping. From
the solution of the Lagrangian equations the cell edge velocitics are known, thus the

37



Figure 4.6: The cases which 1t be coru:dered by a remap algorithm.

remapping is uniquely determined. The formula is constructed as follows

L AF. Aty .
ot = .A—:é' - Zﬁ [f (¢n§) - f(¢,-})] ' (4.8a)

with o , o | ) .
,(éﬂi) = '2".‘10} (°J + ¢;+l) -3 |f‘,.;|(¢,+| - ¢,) ' (4.8b)

where all quantities with a “tilde”™ are new time Lagrangian frame variables except
u, which is time centered.

The formulation above has several stability limits. For the solution step to make
sensc [30] requires that the waves not interact which lcads to the restriction

Arx '
<inf| —=L .
At < u,lf (2|a’|) . (4.9)
where a, is the maximum wavespeed present in each cell. This means that waves
cannot pass through more than half a grid cell in a time step. The stability restriction
is the more familiar Courant-Friedrichs-Lewy (CFL) condition :

At < inf (9—’1) . (4.10)

3 \la,l

v:hich is the restriction uzually teken for methods of this type. For the purely Eulerian
calculations with the Fuler equations. sce (B.1a)-(B.1c),

At Sinf(

J

Az, Az, )

ju, - c,l' Ju, + ¢;]

wherc ¢; is the Eulerian sound speed. For the Lagrangian computations with the
remap step, see (B.2a)-(B.3c), there are three restrictions to consider:

AlSil:f (A(, Az, Azl) '

C, 'y Au

where C, = pc, the Lagrangian sound speed and the sound speed restriction refers
to the Lagrangian atep. the advective velocity is for the remap step, and the zone
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tangling limit.

4.4 High-Order Godunov Methods
For Godunov’s method, the reconstruction ste)s consists of setting

Fi(z) =4 .

or piecewise constant. The Eulerian Godunov uses the Eulerian equation set for
the soiution siep, while the Lagrangian with remap Godunov uses ihe Lagrangian
equations with an averaging done in the moving coordinate frame followed by the
remap step back to the Eulerian grid (see Apprudix B).

Remark 11 The primery (and ofien the only) difference between Godunov’s method,
which is first order accurete, and higher order methods (see Section §.4) like MUSCL [60]
and PPM [122] is the order of the polynomial iscd in the reconsiruction step.

Further developments on this topic were achieved by van Leer [60] in his higher or-
der extensions of Godunov’s method oflen referred to as monotone upstream-centered
scheme for conservation laws (MUSCL). Recently, researchers have extended the ideas *
of van Leer to arbitrarily high-order spatially or 1emporally and christened these meth-
ods as uniformly [136) or essentially [64) non-o~cillatory (UNO or ENO) schemes.

4.4.1 MUSCL Type Schemes

The second-order methods developed by van leer essentially replaced the constant
piecewise profile used in Godunov's method with a linear profile. This profile is
“limited” (Section 4.7 and Chapter 8) in order (o prevent nom-monotone behavior
in the solution procedurc Van Leer’s criteria was somewhat heauristic in nature,
although it turns out to be fairly rigorous after Harten's work on the theory of TVD
schemes (130, 61). The criteria states that the interpolation in a given cell should
not lie outside the range of values defined by the cell average and the neighboring
values of the variable being interpolated [120. °7]. This is shown in Fig. 4.7. Stated
mathematically this is
“Exjg' us < Pilz) < un_lixs. up . (4.11)
Woodward states that this can be relaxed slightly to the averages of the advected
quantity within a cell and that which remains in its original cell must lie within the
range of the original cell average and its neighbors. A scheme typical of those used
here is
P, () = u; + Bu 250 (4.12)
)T
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Monotone

Not Monotoné

Figure 4.7: A graphical depiction of van Leer’s heuristic monotonicity constraint.
For the second constraint given by Woodward the interpolation is monotone for some
time step sizes.

whete A, u is a limited approximation to dufdz|, A;z.

With a second-order algorithm, the question of time accuracy must be ..ddressed.
This is usually done through a Lax-Wendroff like procedure like that described in the
previous chapter. This can proceed from two viewpoints: the first being that 1 am
moving with the fluid to the point in timne which is the average of the old and new
time steps and evaluating the polynomial reconstruction there, the second is tiat of
averaging the polynomial over the domain of dependence for the time step [122). These
two vicws are equivalent if the integral time average is evaluated with a midpoint rule.
This process is depicted in Fig. 4.8.

Van Leer [158, 159) reports another approach to finding a second-order accurate
temporal solution. Defining u;; as the value at the left cell edge of cell j and u;, as
the value at the right hand cell edge of j, the second-order time accurate values of
u,; and u;, are computed from

b == 31 () - 7 ()] (4.13)

and
u::’ - uy, - % [] (u','.,) -.f(u’,“,)l . (4.13b)

This form of the algorithm bears great resemblance to the two-step Lax-Wendroff
scheme presented in Sectica 3.5.1. Similar sorts of ideas are also expressed in a series
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Figure 4.8: Two views of time accurate computation of cell edge valuis.

of papers (65, 160, 66] where a TVD Runge-Kutta time discretization is introduced
and implemented.

Remark 12 The TVD Runge-Kulle temporal discrelizalion provides the means through
‘which Aigh-order temporal ~z:uracy can be achieved withoul significard implementa-

tion difficullics. This is especially true in mullidimensional problems .+ with systems
of HCLs. These mullistage algorithms can be writlen in the follownng form

-3
u' = Z [o,‘u' + Bua ML (u‘)] . (4.14a)
| k=0
where the discrete differential operator is denoted by
du

and a;y ana B, are cocfficients. The critersa Jor this to prodvce TVD resulls (see
Section 4.5) jiven an appropriale spatial operalor is a CPL condition

Q4

vs m . (4.]46)

If 3, is negative, the spatial operator must be anliupuind [675, 160]. In those references



a numbcr of schemes are defined.

4.4.2 ENO Type Schemes

Harten and Osher [136) defined a new class of schemes as being uniformly non-
oscillatory. This class of methad is part of and predecessor to the ENO schemes.
One particularly distinguishing fact about this scheme is that it is sccond-order ac-
curate in all its norms. This gives it some strong advantages over other sccond-order
high resolution schemes, which degenerate to fisst-order accuracy in the maximum
1orimn.

Definition 2 (Harten and Osher [138)) Non-oscillatory interpolation is defined
by inlcrpolation, P, (r) that has its number of cztrcina in an inlerval that is not
cxcceded by the local cxtrema in the data, u(z).

The cor struction of ENO schemes has extended the concept of high-order Godu-
nov methods to a much wider range of potential schemes [161] (this class of methods
included other Godu.iov type algorithms). The basic concept of the ENO scheines is
to compute a interpolating polynomial using the data from the smoothest part of the
grid locally [162]. To do this a limiter is used to choose which direction to go for the
smoothest reconstruction. Thus the stencil used for the finite difference formulas is
adaptive in naturc and the accuracy of the scheme is limited only by its implementa-
tion and the propertics of the data. One problem is that despite the relatively simple
concept, the ENO schemes [64)] as originally formulated are horribly complex. This
problem is even more severe in multi-dimensional implementations {161, 64]). Shu
and Osher [65, 66) have cased this burden somewhat and if more recent work is any
indication (139] this should case more. For ENO schemes, in general, most properties
such as convergence, boundedness of solutions etc. have yet to be proven.

Definition 3 (Harten, Osher, Engquist and Chakravarthy [64]) Essentially non-

oscillatory interpolation is defined by inlerpolation, P;(z) thal is the smoothest ap-
prozimation lo the dala in some sense.

An ENO algorithm for polynomial reconstruction is outlined below. This is known
a reconstruction by a primitive function. This ENO formulation is based on the
interpolation of a function defined by |

Qzp)= [ uds, (4.150)
thus d
u,(r) = ——Q-j;(:l : (1.15h)

12



By virtue of the previous two equations, the interpolation can be integrated to the
cell average of cell j, but also every cell the stencil for cell j.

Before showing the algorithm, some terms need to be defined

a = Q[ )mnu 'I:,:n'gjfll ) (4.163)

¥ =Qattaane o miih] (4.16b)

where the brackets denote the k' divided difference [163] which can be defined
recursively® The algorithm computes a polynomial for Q (1, ,%), which once differ-

entiated can serve as the polynomial approximation in the j** cell.

Algorithm 2 [ENO Reconstruction via Primitive Function [64]]

0
1. Initialize k = 0, 20, = 2.

2. li]at| 2 |u'| then

&= b, (4.17a)
| (jomin)**! = (j, min)" -1, (j,maz)** = (j,maz). . (4.17b)
3. If [a*] < |8*] then

& =at, (4.17¢)

(jymin)**! = (j,min)" |, (j,maz)**' = (j,maz)* +1. (4.17d)
4. k=k+1

5. Return to step 2 until desired accuracy is achieved (k=n).
6. Define the following polynomial

smas®

P(z)=)_¢‘ I (z-2). (4.17¢)

hmt  jmymmm®

Remark 13 The consideration of yoint valses versus cell averages is of paramount
importance in a theoretical sense. ('odunov’s method is predicated on the concepl that
the grid point values are averages wver a control volume. The spatial determination
of the values is only sel in the averaged sense, but the point values are not defined
clearly as to where they should reside in space. This is a sort of grid uncertainly prob-
lem or Gibb's error. Because most ENO implementations are hased on inlerpolaling

YA divided difference is defined as Q 2y, .., 3.] = (Q[22.. ... 2,) - Q2s,....24-4)) /(2 - 23).
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Q (r) this problein docs not arise. From the standpoint of conservation the interpo-
lation methodology is not crucial. It is precisely this point on which the problem of
implementation of ENO schemes hinges. See Chapter 9 for further discussion of this
lopic.

Remark 14 In Shu and Osher's papers on the easy implementation of ENQ schemes,
a Jormula was prcsented without much explanation. Their numerical fluz is defined

by
24

P = ST L m41
fnl = fn} + gﬂu (0:”‘)"* + Oh '
where a3 = 3} and ay = ses- Where does this come from? From earlier ENO work

. d
for =3

)+ } '

where

Q)f% = /‘:"’ f(.t)d.t .

From llildebrand’s numerical analysis text [163], the coefficients in the above equa-
tion are from the Fuler -MacClaurin cquation for errors in inlegration with a slight
modification to take the function to approzimate ]"} ralher than I,_; as the equa-

tion in the text would indicate. This corresponds to adding ].”’ to the equalion and
recersing the signs of the error terms. This raises the question of whether or not the
Q function is correct in the sense that this implies. The definition of the point values
as cell averages would support this, but it raises questions of the correct derivation of
these concepts in mullidimensions especially on non-orthogonal grids or unstructured

grids [106].

'To close out this section, the results on the same test problem used for the classical
methods is used with a high-order Godurov method. The results shown in Fig. 4.9 are
much better than those found by any of the classical method, with the discontinuities
remaining sharp and with little smearing and no creation of oscillations.

Remark 18 One problem with this sort of method is that il is ezpensive lo use in
some cases. Some promising work has appeared recently which only applied to more
‘compler methods described above at a few grid locations (where oscillations -would
occur with classical methods). These method use a fillering technigue to choose where
to apply the HOG-type methods (164, 165].

4.5 Total Variation Diminishing Methods
The cffort to put the new modern algorithms on firmer theoretical footing resulted in
the concept of total variation diminishing (TVD) methods [130], which have a number
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Figure 4.9: Computation of a square wave by the scalar wave equation using a HOG
algorithm (3 = 1, and v = 0.5).

of desirable properties. To be total variation diminishing, a scheme must satisfy the
following inequalities,
TV (u***) < TV (u") ,

where

TV(u) = Y luym-uyl.
Jm~00

While these methods include classic monotone schemes (such as upwind differencing or
l.ax-Fricdrichs), they can also be extended to include methods that 2se second-order in
the L, norm. By construction, these methods arc still first-order a'. points of extrema
(in the L, norm). A second propesty of TVID) schemes, which is both useful and
satisflying, is that they can be extended to include implicit temporal differencing [110).
‘This generality is quite desizable as it allows a more general use of TVD algorithms fos
a wide range of problems and applications. It should be noted that MUSCL schemes
have also been extended to include implicit temporal differencing.

The basic proof of the TVD property proceeds as follows:

Theorem 4 (Harten [130)) Given a scalar wave egualion and a conservalive ny-
merical scheme vrillen as '

uyt! = o + C,”’A"’u" B B L (4.18a)
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where

1 20, C}y 20, (4.18b)

and

Ciy +Chy < (4.18¢)
then the scheme is TVD.

Proof. Start by subtracting the cquations at j + 1 from j giving

B,u=C73 8, qudt (1-C =€ ) B,0pu 4 €8 pu. (1190)

Because | am assuming the condition stated in the theorem, all the terms on the right
hand side are positive, thus by the triangle inequality

8,08 s € gIA:-i“I + ( o :ﬂ) |8,0yuf + Coy |8,04u) - (4.19)

. Summing over all j (—00 < j < oo) gives the necessary conditions as the above
cquation must hold for all j. This takes the conservation principle into account
resulting in the cancellation of most terms in the equations. C

Remark 16 The theory of TVD schemes has also lead to implicit scheines based
on these principles [110]. These have been used lo produce sleady-stale profiles for
aerodynamic designs in a variely of flow regimes [166). In addition, the HOG and
ENO (167] algorithms have also been extended to implicit time differencing. By laking
~ the semi-discrete form of these equalions

o
-g-':' = »} ”’u :-}A -ju (4.202)

with the conditions for a TVD approzimation being
’ 20, and C’*i 20. (4.20b)

Onc can see that the set of linearly equations resulling from this scheme in the case
of an implicit differencing is diagonally dominant and thus stable for solution by a
variely of means.

Jameson and Lax (168} have provided a more general definition of a TVD scheme.
This theorem provides conditions by which a scheme can have much larger support
and be TVD. Shu [169) reports that Engquist and Osher had developed very high
order TVD schemes along these lines.
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Theorem 5 (Jameson and Lax (168)) Given a asrié di: 00t cchelii

é—'-‘-: D C,th, AL LR (4

ot
dt Am-J<)<d

is TVD if the following conditions are satisfird ‘or il k
Calk=1)2C3(k=2)2...2C_;:s= " 2% (4.21b)
and
—Co(k)2Cs(k+1)2...2Cs. - . -1)21 (4.21c)

Remark 17 This theorem when inlerpreted sirams, means thal the support for an
inlerpolation within a given cell must decreasre vt 1staac- from that point.

Remark 18 The questions relating to the smbihi:. .snd accuracy of a X VD approz-
imation must be addressed separately from tie guewzon of its nature with regard to
being TVD. It is ofien the case that when a scheme fads to prowde TVD solutions,
it also is essentially unstable.

For instance, to prove a polynomial representsmmen «f 2 function is TVD (in one
dimension), a general procedure can be defined. Tuaing the polynomial, P, (9) where

0=:-IL’

.nd then taking the case where Aa > 0. awer definee

P@)=2#(® -«

with the function § € l—%, }] The formzbrthr -omser=anon law :::proofs of TVD
algorithms (explicit) is

uM =y, + CJ”*A”%,,;‘--_, A et
setting C +) = 0 then,

Crly=2a[l +Q,(0) = Gyres M. ,.

where

P (o)

Q,(0)=
Thg conditions to be TVD arse

0<C ., <
-3
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thus the following conditions can be brought to bear on the Q functions such that

Ql-' (0) - QJ (0) S l [}
and ,
Q,(0)-Q,.,(0) < i 1.

then the overall scheme is TVD while these arce satisfied.

There are two major types of TVD schemes: the modified flux form {130] and *he
svrmznetric type [134). The modified flux formulation is equivalent to a MUSCL type
scheme ol o | - rave equation.

4.5.1 Modified Flux TVD Schcmes
The modified nux TVD scheme has its dissipation function defined by

S |
0:1’; = 5 [gl + 9ye3 ~ 'GJO’ + 7)0"A;0}u] ’ (“-228)
where
“l "\)-}u ",’}A,Q’ ) (4.22L)
x—i—" ifA G u#0
e} = N e (4.22c)
otherwise
and |
= 5 (lal - 2a?) . (4.224)

4.5.2 Symmetric TVD Schemes

The symmetric TVD scheme has its dissipation function stated as

°frf' = [(l“)*}' - Aa:ﬂ) Qn} - I‘:’o}“ A)o}" ’ (4.23)

where Qﬂt is a functica of L, N A"f“' and A”*u The advantage of the sym-
metric TVD scheme is ats luwn‘ cost in terms of arithmetic operations.

4.6 Flux-Corrected Transport

The flux-corrected transport scheme was the first algorithm developed that rec gnized
the importance of Godunov's theorem. Some of the flux limiters (notably the minmod
limiter) scem to have their genesis in the FCT method. Yet despite this, the other
methods have Rlourished while the FCT methods have languished by comparison.
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The original FCT was defined in a series of papers which gave analysis and results
of using the scheme. The best recent reference is the book by Oran and Boris [4].
This method blends a high order flux with a lo~ order monotone flux is such a way 2s
to prevent the creation of new extrema. Although it is an improvement over classical
methods, the FCT has not done well in tests against other modern algorithms {170, 44)
and remains a pariah of sorts. The primary uses of the FCT have primarily been
confined to turbulence (77], MHD (171] and rcactive flow problems [172].

Zalesak [62] redefined the FCT in such a way as to make it more general. A
standard low-order solution, similar to that obtained by donor-cell differesicing, is
used to define a monotonic solution. This solution is then used to limit an antidiffusive
flux, which is defined as the difference between a high-order and low-order flux. As
with the carlier versions of the FC'T, the limiter is designed to give no antidiffusive
flux when an extrema or a discontinuity is reached. This prescription of the FCT can
allow the user to specify a wide range of low-order fluxes as well as a large variety of
high-order fluxes. These have included central differencing of second- or higher-order,
Lax-Wendroff, and spectral fluxes [173].

Recently, several researchers [174] have introduced an implicit FCT algorithm;
however, this algorithm is limited to small multiples of the CFL number. This is
because the low-order solution is produced by multiple sub-cycles with an explicit
donor-cell (or other monotonic) solution and an implicit high-order solution. The
high-order solution is only stable for small multiples of the CFL number, thus limiting
the applicability of this algorithm. The FCT has also been extended for use with a
finite-clement solution method with great success [144]*.

One problem that plagues the FCT method is extension of the method to sys-
tems. Some schemes have used an equation-by-equation synchronization of flux lim-
iters [144], but the results are not altogether pleasing. To my knowledge no one has
published results of a Riemann solver being used to extend a FCT method to systems.

The flux-corrected transport algorithms can be written as follows:

1. find low-order monotonic cell-edge fluxes, ],'; b
2. find the diffused solution, ,,

3. find a high order flux i}:,,
4. define an antidiffvsive ‘Jux, ,:‘ﬂ = f,’:} - ]}',r

5. limit the antidiffusive flux to j)‘;;. and

6. apply the corrected antidiffusive flux to the diffused solution to find u}*’.

“The use of adaptive unstructured grids has heen a key part of the success of this work.
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The Boris and Book algorithm and Zalesak’s algorithm differ only in a few steps. The
BBoris and Book algorithm uses a monotonic flux defined by

. AN
f:‘_"’% - %ff, -+ fj+|) - (E + 5"‘) (1IJ+| -u_,) . (4.24)

In Zalesak’s algorithm, a simple donor-cell Aux may be used (or any other monotone
method) as the low-order flux. [n the Boris and Book algorithm, the antidiffusive

flux is defined by
R 1 L . '
fhi=g (A= 2a?) (i, - ;) (4.25)

and in Zalesak’s algorithm 1t could be a Lax-Weudroff flux or another higher order

flux minus the monotone flux.

Remark 19 The formahsin adopled above s from Zalesak’s generalization. Boris
and Book’s original FFOC'T was structured slightly differently, although the end resull
is equivalent. Their algorithm proceeds as follows 1§, 175]: Compule a transported

solulion

u;_r = u;' - (fJT_'_% - f7_%) . (4.26a)
This solution is unstable and must be stabilized with a diffusion step
uTD = u;r " Iyl (u;':._, - u‘,') I (u: - uf'_l) . (4.26b)

This solution can then be corrected with an antid:fJusion step, but this step 1s fillered
with a fluz limiter to avoid oscillatory solution~

apl _ L TD 0 TD _ 'rn)_ ¢ (T'D_ TD) ‘
u;t = u; uﬂ%(u’-_l_. u, V-3 u; 3 ) » (4.26¢)

where v is an anlidiffusion cocfficient not the CFL number.

Remark 20 The main problem with the FCT -s ils lack of theoreticel basis in the
light of other modern methods. Were this present this method could move back toward
the mainstream of numerical analysis.

Before moving on, the results of the square wave test problem are given in Fig. 4.10.
[t should be noted that these results are very sinmlar to those produced from the HOG
algorithm (see Fig. 4.9). The results is somewhat less aesthetically pleasing due to a
lack of symmetry. A similar test with a sine wave produces a “squaring” of the sine
wave because of over compression

I explore FCT methods 1 a great deal of detail in Chapter 5, 6 and 7.
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Figure 4.10: Computation of a square wave by the scalar wave equation using a FCT
(Zalesak) algorithm.

4.7 The Role of Limiters

Flux. slope or gradient limiters play a pivotal role 1n the construction of modern
methods for solving HCLs. The source of the nonlinearity necessary to produce high-
order ron-oscillatory algorithms is in these limiters. Despite their importance, the
amount of work done toward understanding their behavior is relatively small {132, 176)
and limited to a small class of schemes. A notable problem is that the analysis was
confined to the same class of schemes, which are not necessarily representative of
all the modern algorithms. This lapse in the collective understanding of limiters
is important because limiters are a means through which a large class of modern
numerical algorithms can be unified theoretically. .

The FCT lirniter has remained largely unstudied; the only major development is
that of Zalesak [62). The reasoning behind the form and function of the FCT limiter
is unknown beycnd the purely obvicus. It is high!y likely that both the FCT and
other modern algorithms could benefit greatly from a greater understanding of their
respective limiters.

At this point, it is useful to delincate the difference between slope and flux limiters
more closely. This is done from the standpoint of a philosophical differentiation
rather than from a purely technical basis. The slope limiters can be thought s being
nied directly during interpolation. Flux limiting usually involves me.hods that are
classified as finite difference types. Thus slope limiting applirs te HOG aigorithms
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and the flux limiting applies to TVD and FCT algorithms. One caveat can be placed
on this classification; it is not stringent, an example of this are the ENO schemes due

to Shu and Osher (65, 66).

A more complete description of limiters is given in Chapters 7 and 8.

4.8 The Role of Riemann Solvers

The role of Riemann solvers in modern methods for solving ! CLs is not always clear.
At one level, these inethod can be thought of as an essential ingredient for a successful
algorithm, but at another level they appear to be a closure relation used to improve
accuracy, or an extravagant fcature which is not necessary.

The issue of Ricmann solvers is critical to these types of methods. The philosoph-
ical basis of these methads is that the computational domain has been cut up into a
number of discrete subdomains with the distinct possibility of discontinuities at the
subdomain boundaries. The Riemann solvers resolve the behavior of the interaction
of the subdomains. The Riemara solvers are integral parts of the schemes, but so
is the fundamental differencing scheme. The prescription of the state of the fluid at
the computational domain is as important (for high accuracy) as the solution for the
ensuing fluid behavior. The Riemann solver however must ensure the physical nature
(satisfaction of an entropy condition) of the solution.

Appendix B develops Riemann solvers in significantly more detail.

In the next chapter | begin the study of the design of high-resolution upwind
shock-capturing methods through looking at the FCT method critcally.



Chapter 5.
An Improved Flux Corrected Transport
Algorithm: A Finite Difference

Formulation

Iron rusts from disuse, stagnant water loses its purity, and in cold weather
becomes frozen; even so does inaction sap the vigors of the mind. Leonardo Da
Vinci

5.1 Introduction

As discussed before, Godunov [56] showed that the monotonic solution of first-order
hyperbolic conservation laws is at most first-order accurate for linear differencing
" schemes. The first algorithm to successfully address this difficulty was the FCT
algorithmm of Boris, Book, and Hain [59, 140, 141, 142]. This algorithm performed
quite well on linear advection problems and paved the way for future developments ins
the field. It essentially consisted of computing a sclution with a nondiffusive transport
. method followed by a stabilizing diffusive step. This monotone solution is then used
- to aid in the construction of an antidiffusive step in which the solution from the
- first part of the algorithm is locally sampied and corrections are “patched” to it.
 This is accomplished with a flux limiter that only applies the flux corrections in the
smouth part of the flow. As a result, the solution will be of a high-order in smooth
parts of the convected profile, but fisst-order near discontinuities and steep gradients.
Extension of the FCT algorithm to systems of conservation laws, however, has proved
less sucressful.

Further developments on this topic were achieved by van Leer [60) in his higher
order extensions of Godunov’s method often referred to as MUSCL. The prescription
~ of slope-limiting used by van Leer has great similarity to the flux-limiting used in
the original FCT. The difficulties associated with FCT with systems equations is not
shared by MUSCL because an exact solution to the local Riemann problem is used
to construct the convective fluxes. While this approach adds complexity and cost to
the solution procedure, the corresponding quality of the solution is greatly improved.

Zalrsak [62] redefined the FCT in such a way as to make it morc general. A
standard low-order solution, similar to that obtained by donor-cell differencing, is used
to define a monotonic solution. This solution is then used to limit an antidiffusive flux,
which is defined as the difference between a high-order and low-order flux. As with the
catlier versions of the FCT, the limiter is designed to give no antidifusive fiux when an
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extrema or a discontinuity i~ reached. This prescription of the FCT can allow the user
tu specify = wide range of low -order fluxes as well as a large variety of high-order fluxes.
These have included central differencing of second or higher order, Lax-Wendroff, and
spectral fluxes [173). Recently, several researchers [174] have introduced an implicit
FCT algorithm; however, this algorithm is limited to small multiples of the CFL
number. This is because the low-order solution is produced by multiple sub-cycles
with an explicit donor-cell (or ather monotonic) solution and an implicit high-orde:r
solution. The high-order solution is only stable for small multiples of the CFl, number,
thus limiting the applicability of this algorithm. The FCT has also been extended for
use with a finite-clement solution method with great tuccess [144).

The performance of the explicit FCT algorithm is the subject of this chapter. Sev-
eral investigators [170] [44] have noted for the older FCT algorithm that a lower CFL
limit is required for stability. The FCT algorithin also suffers from being overcom-
pressive (as is shown in Section 5.3). This was shown in a test of the FCT on a shock
tube problem [143), where even at a CFL number of 0.1, the solution was of relatively
poor quality. This probably is due to the handling of the pressure-related terms in
the momentum and energy cquations. This work aims to address these problems, first
through making several improvements to the FCT and then by showing the extension
of this modified FCT to systems of equations. In accomplishing this, | make extensive
use of approximate Riemann solvers of the type introduced by Roe [63].

This chapter is organized into four sections. The following section provides an
overview of the numerical solution of hyperbolic conservation laws. Later in that
section, the FCT method according to Zalesak is introduced. This method is analyzed
and suggestions for improvements are made including the extension of FCT to systems
of equations. In the third section, results are presented for the methods discussed in
this chapter. These results ase for a scalar wave equation, Burgers’ equation and a
shock tube problemn for the Euler equations. Finally, some closing remarks are made.

5.2 Method Development

The development of improved methods follows a short description of current FCT
methaods.

5.2.1 Zalesak’s FCT Algorithm

Zalesak's FCT has been classified as a hybrid method that is applied in two steps. By
being hybrid, the algorithm is based on the blending of high- and low-order difference
schemes together. Step one is accomplished with a first-order monotonic solution such
as donor-cell plus some additional diffusion (the entropy fix discussed in the previous
section adds such dissipation). This could be accomplished with other first-order
algorithms such as Gadunov's [56) or Fngquist and Osher’s [127]. These fluxes are
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used to pruduce a transported diffused solution i as follows:
i, = u -a(/d /0‘;) (5.1)

‘A high-order flux, f¥, is defined in some way and then the low-order flux is subtracted
from the high-otder flux to define the antidiffusive flux as

fAD _ M _ L

1} T el T el
The antidiffusive flux is then limited with respect to the local gradients of the con-
‘served variable computed with the transported and diffused solution. Zalesak defined

his limiter as a prelude to a trily multidimensional limiter, but also defined an equiv-
alent limiter as

jl(’i ,,;max{o min ,}a A; }u |]",',S'";a A’ ]} (5.2)

where S,y = 4, *i"/ |..\, ’;u| is the sign of the conserved variable's gradient spa-
tially. This limiter is identical to the limiter defined by Boris and Book {59)], but with
a different definition of fA2. The final cell-edge numerical ditfusion is defined by

,” = ].’; +¢,” (5-3)
T'he FCT generally carrics a stability limit on its time step of

vel.

Before going further, several critical comments need to be made concerning this
algorithm. Despite the striking generality, which is driven by the prescription of
the antidiffusive fluxes, the algorithm has some deficiencies. By its formulation as
a two-step mcthod it has some disadvantages in terms of analytical analysis and
efficiency of implementation. By the use of the inverse grid ratio o~! in the flux
limiter, the algorithin is effectively limited to explicit timme discretization (as is shown
in the following section). The use of a diffused solution in the limiiter is important
in stabilizing the solution, which could yield oscillatory solutions without this step.
Under closer examination, the use of a diffused solution acts as an upwind weighted
artificial diffusion term. This sort of definition could lead to a fairly complex one-
step FCT algorithm, which has, at first glance, similasity to UNO-type schemes.
The diffusive terms in the FCT algorithm:'s limiter are upwini: weighted rather than
centered as with UNO based algorithms. Additionally, numerical experiments with
a scalar advection equation show that the total variation for the FCT solution can
increase with time for a CFL aumber less than one.

The nse of higher order antidiffusive fluxes with this preseription of the FCTF also
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raises some questions ab. ut the acteal ot der of the approximation. The antidiffusive
ttux is of the higher ordei, but the local zradients in the limiter are only accurate to
sccond-order. This suggests that the solution may actually be of only second-order
spatially (in the Ly norm). This also holds for temporal order as the local gradient
terms are only firs.-order in space, thus an antidiffusive flux based on a Lax- Wendroff

flux may actually yield a first-order accurate temporal approximation. Thus the form
of the local gradients used in the limiter may also need to be modified to accomplish
the goal of true higher order accuracy.

5.2.2 A New FCT Algorithm

The first and simplest change is to rewrite the flux limiter as

SEy = Sypymax {0 min] S,y 4t 18,04 [SAR ] Sia gy -gi]} o (500)

where
foer =¥ (a,41) (5.4b)
or
fyey = 0 (a,0y) —0dlyy (5.4c)
and S, , has the same definition as before. See Section B.3.8 for the definition of V.

The second choice for ji,, j gives second-order accuracy in both time and space if ])‘,’i

is of similar or higher accuracy (61]. This relatively small change has a significant
impact on the FCT algorithm, the solution is better behaved, and with some minor
modifications can be stated as a stable implicit algorithm. This form is also a great
deal closer to the dcfinition of limiters used in TVD algorithms. However, this still
lcaves a two-step method which poses some problems from the standpoint of cfficiency
and cxtension to systems of conservation laws.

The similaritics of this modification of the FCT with symmetric TVD schemes [134)
are quite strong. ‘The necessary chang~ to convert this scheme into one equivalent
to the one described by Ycee are simple. 1nis consists of dividing the local gradient
terms in the limiter by two and removing the first step of the FCT. Yee writes the
numeiical flux for the symmetric TVD method as

. 1 '
Froy = 5 [aey (w4 u0) = ¥ (a,04) B,05u+ Q) - (5.5)

An example of the @, function would be

1+

in = Sul hax {0, min[S,,;(: (‘:’oi) A,,,u,(v ("ul) Au)“v

' Esacrtinlly © is 8 smoothed definition of sbeolute value. The function is identical to the absolute

valiis for maAt valums, Lat is sinoothed near the origin
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s,,,w(a,_,) A,_;u]} . (5.6)

which strikes a strong resen.  nce with (5.4a) for an antidiffusive flus: defined with a
sccond-order central differen... For ease of analysis, this method is rewritten in the
following form:

jn} = % [“n} (v, +uyy)— ¥ (a“’) (l - Q,,’) A”’u] . (5.7)

where

Q,,} = minmod (l,r}”}.r;”) ,

with rl”} = A,,;u/d,,4u and e} = A,-4u/A,,4u. The minmod limiter used
with symmetric TVD schemes is defined by Yce, but has the same effect as (5.6).
The minmod function of two arguments bas che usual definition given in [45), which
gives the same effect as the FCT limiter for three arguments. In words, the miinmod
limiter returns the minimum argument if the arguments are of the same sign and zero
if the signs differ.

~ The FCT cell-edge flux can be written in the same way as the flux for a symmetric
TVD scheme by defining

: ]
f:c;i = EI"NQIQ")A»}" ' (5.8)
if Q,4 is based on ( 5.4b)
Q)+ = minmod (1,27*,27") ,

and if Q”, is based on | . Ic)

Q4 = (l - ala,,!l) minnod (1,21‘".2?') '

d
. A, i
= L R
o A,_'u .4
. : A,’.'l
In {134] the inequalities that need to be satisfied in order for a flux of the form given
in (5.5) to bre TVD are

Q. <2. (5.9a)
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and

Q;f} 2
< 1—2, 5.9b
Toap  0(1=0)]a,y (6.9b)
]
v< R (5.9¢)

where 0 is an implicitness parameter, such that 0 = 0 is fully explicit and 0 = 1 is fully
implicit. The FCT limiter given in (5.4a) satisfies the first and last of these relations,
but satisfaction of the other relation (5.9b) in a rigorous manner has proved to be
more difficult. To establish some bounds on the properties of the FCT solutio s, the
first step of the FCT is ignored for the time being. Given this, the wosst cases fur Lhe
limiter are Q = 2r2 or 2(1 — v)r2. Comparing the first of these cases with (5.9b)
gives

2
2<¢7(l--0)|a|-'2'
or ) l
YSIu-9

For the second of the two cases (only considered for 0 = 0),

2
: 2(I-v)<;—2,

or
v<l].

Thus. even without the first step, the new FCT algorithm is TVD undcr some condi-
tions. It is also unconditionally stable for fully implicit temporal discrctization. The
first step adds more dissipation into the algorithm, which should result in higher CFL
limits for the first ruse. Numerical experiments confirm this and show that the new
- FCT is TVD for al CFL numbers less than one.

Talesak's FCT can be subjected to a similar test after a reformulation of its limiter.
(iiven the same definition as before - :*!
2Y 2
ty= (L EE).

- (5.!0)

where 72 are defined as before. Using (5.9b), and again neglecting the first step, one
can show that
v<

—- (5.11)

Thus, for a fully explicit approximation withcut the firs! step, Zalesak's FCT is never
TVD. However, as the degree of implicituess increascs, the algorithm becomes TVD
‘or some CFL nurbers and eventually becomes unconditionally TVD at 8 = 1. If one
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looks at the formn of the limiter as the CFL number increases, the effective antidiffusive
flux reduces in an inversely proportional fashion. Therefore, at large CFL numbers,
Zalesak's FC'T is largely ineffective as a high-order implicit algorithm. Numerical
experiments have shown that with the first step, Zalesak's FCT produces results that
diminish in total variation up to a CFL number of about 0.95. Because the algorithm
described above does not meet all my goals, further improvements are sought.

5.2.3 A Modified-Flux FCT Algorithm

To attain these goals, the FCT is recast in the form of Harten's modified- flux TVD
scheme [61). From this basis several FCT limiters can be shown to be TVD by the
criteria given by [132), and the FCT can be written as a one-step method and extended
to use as an implicit algorithm in the same way as TVD methords are [110). This will
be examined in the future.

The modified-flux TVD iethod is defined by computing cell-centered modified
fluxes and making the overail flux upwind with respect to both the “physical” and
modified fluxes. Furmally, the modified-Rux formulation has a dissipation term,

O,o‘ 2 [g) +9,m -V (0"’ + ‘7"*) A"’“] ’ (5.12a)
v&hcrc
g, = minmod (u,_} 3, _ju. iy} 8,44u) , (5.12b)
and
ni ‘A 0
Tep = ,’u ) 1Y o # ‘ ‘5.’2‘)
otherwise

A mote general form of the minmod function is

minmod (a, b,n) = sign{a) max [ 0, min (n |a|, sign (a) b},
min (|a] ,n sign (a) b)] , (5.13)

which for n = 2 gives the Superbee limiter developed by Roe [176]. The function
B,4} can have several forms, including
1 .
Brot = §g' (a,,;) . : (3 14al

Of‘ 1
;4"* = '2 il,' (a",) - aa:’i] . » (5.14b)

For 1 5.14a). the stability linit depends on the form of the limiter, for instance the
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general minmod limiter yields a stability limit of

9
v s 2+n)(1 -0

for # € 2. The use of ( 5.14h) gives a stability limit of
vr<l

for all values of n < 2. ‘I'h¢ second definition has been recommended for explicit,
time-accurate solutions [61] [110)].

To formulate the FCT in a similar form, simply change the specification of the
limiter. The traditional limiter used with the FOT is effectively a cell-edged flux
rather than a cell-centered flux as needed for the modified-flux formulation. The
definition of the antidiffusive flux must also be changed to a form more amenable to
this formulation. This requires a more thoughtful statement of the antidiffusive flux,
which can be easily incorporated with the type of formulation desired. For instance,
the second-order central difference antidiffusive flux is

AF {
- 3¢ (a,05) 2,21 (5.15a)
or a Lax-Wendroff flux
1
f;{_"}“_ = 5 [q’) (aj-_'_%) -a'a:_.%] AJ+§"‘ (5.15b)
or a lourth-order central difference
| |
I =3la) A (A, -A53f) s (5.15¢)

These forms can be incorporated with a new limiter that has the desired properties.
This limiter has the following form:

Tt
)
3
=)
ap——
o
——
N
g

where p; +4 15 defined by (5.14a) or (5.14b).

Analysis of this limiter for the second-order central-difference-based antidiffusive
flux follows that of Sweby [132]. For the values of 0 < n < 2 in (5.16), the resulting
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Figure 5.1: The characteristics of the FCT limiters for the modified-flux formulation.

~limiter is in the TVD region of the curves shown in Fig. 5.1. For the value of n = 2,
the resulting limiter is identical to Roe’s Superbee limiter [176]. Shown in this figure
are the plots for n = | and n = 1.5; vhe plot for n = 2 is identical to the upper
boundary of the second-order TVD region. The boundaries of the second-order TVD
“region are shown by the thick lines on the plot. These limitess are second-order for
all n for r < 1/2 and also second-order for r > 2/n. The only limiter of this class that
is always second-order is the n = 2 limiter. The definition of r follows from Sweby’s
work.

5.2.4 Extension of FCT to Systems of Equations

The extension of the previously described methods to systems of hyperbolic conser-
vation laws is no simple matter. The FCT currently is extended to systems in the
simplest fashion. Traditional implementations of the FCT take the pressure terms
in F as source terms and are handled with central diffesences. This Icads to a pocr
representation of the wave interactions and the results that follow are often less than
satisfactory. 4

The use of exact and approximate Riemann solvers offers a way through which
more of the physical nature of the solution can be integrated into the solution p: >
cedure. To the authors’ knowledge no attempt has been made to iacorporate F..2-
mann solvers with any of the previous FC'T algotithms. Using van Leet’s Riem.an
solver [60] [177), with Godunov's first-order method [56] [41] as the low-order method
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with the first modification of the FCT, is my first attempt to incorporate a Riemann
solver with FCT. While the results are better than the standard FCT implementation,
they are worse than the Godunov method alcne. To provide a more accurate and
robust method, an approximate Riemann solver of the type introduced by Roe (63]
1s used.

The implementation of these Riemann solvers relies on the following transforma-
tions:

A,’}u’ = gr:’*o:d ' (5.!7&)
where
oni = Z‘:»’A»}"' . (5.17b)
) .
The numerical dissipation terms arc then written as
OJDOC} = 2: 2 )-O" ( )0’) 0)” ’ (5.18.)
)0’ = Z'}o’ ( ;9’) (5.18b)
and
= 2.: . [9, + 00 - v (ady +10y) abey) - (5.18¢)
where |
g: = minmod (“:-*a:-,o":O*o:”) ’ (5-‘“)
and Ao
TFL" ifa, #0
Py={ T T (5.18¢)
0 otherwise

Given these expressions for the numerical dissipation, the flux limiters used in the ‘
modified FCT (and for that matter classical FCT) Fqs. (5.2),(5.4¢), and (5.16) are
rewritten to take advantage of these forms. When a monotone first step is required
with the FCT, Roe's first-order method [63] plus the entropy correction is used for
the low-order method. The antidiffusive fluxes for the k** wave are rewritien as

ey = %“’ CRYLAY (5.19a)
or a Lax-Wendroff flux
= ["’ CRYELA CRY ] aj,y - (5.19b)
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ot a fourth-order central difference

= "’( Aoyt (“f--;"f-; ~a}4al,4) - (5.19¢)
For the classic FCT method, the flux limiter becomes

[:c;l" ,,max[O m"'(lfnll *l” “) -} :090 °;ﬂ)] . (5.20a)
The new FCT limiter becomes

Iﬁi = ’; max [o min ('Il”' ’*")"*ai-" "}”l’!a)O’)] " (50205)

where
‘.‘:05 = d’(;':O})
ofr
SRETICRVETICRY
The modified-flux FCT method becomes

minmod (n) = S ,’maxlo min (""If:ﬂl ,;p’_!o,_l)
min (ny”’ |a”*|,§ns,.,,];f_’)] ’ (5.&)

where

u) = "( 0})

1 2
ey = ‘2‘[" (a}0y) - @ ("?’;) ] :

Again the FCT corresponding to the symmetric TVD schemes would require that
(5.20b) be divided by two and the fizst step of the FCT removed from the algorithm.
In the next section, the effects of these changes in the FO'T is pracmed and compared
with other standard methods.

It has come to my attention thai Harten lm developed similar ideas in [178].
These ideas are directly related to Harten's modified flux algorithm.

or

5.3 Results

To gauge the capability of the methods discussed in the previous sections, three test
problems were solved with the FCT methods and several other high-resolution finite-
difference methods. The other methods used are not described in detail here. The
first test problem solves a scalar advection equation, on a uniform grid. Two problems
are considered: a square wave and a sine wave over a complete period. Both waves
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have an amplitude of one. The second problem is the inviscid Burgers’ equation with
initial data of a sine wave on a periodic domain with an amplitude of one. This
solution is comparcd with the exact solution and tl.e corresponding error norms are
uscd to show convergence and order of approximation in these norms for the various
methods. Finally, the shock tube problein used by Sod [41] is used as a vehicle for
comparison of these methods for their use with systems of hyperbolic conservation
laws.

The test problems are discussed in more detail in Appendix A. Specific differences
in the usc of the problams is given in the discussion.

5.3.1 Scalar Advection Ejuation

For the scalar advection of a square wave with a uniform velocity, the FCT performs
quite wel! with very little numerical diffusion present in the solution. These solutions
arc obtained for a CFL number held constant at 1/2 after 80 time steps.

As shown in Fig. 5.2 (a), the squarc wave is captui~d quite well by the difference
scheme, however, there is a distinct lack of symmetey in the solution. This lack of
symmctry is evident in this version of the FCT drsaite the choice of the: CFL number
(which should lead to symmetric tesults. ideally). This can be attributed to the use
of anti-upwind data by the limiter. This is more evident in Fig. 5.2 (b), but also
~vident is the overcompressive nature of the scheme. The sine wave is in the process

" heing compressed into two square waves. This behavior is clearly unacceptabie
- wse the character of the waves is largely destroyed by this algorithm. Figure 5.3
.. =vs that the new FCT algorithm is somewhat more diffusive (less compressive) and
wee he more of the expected symmetry in the solution. Figure 5.3 (b) still shows
iL 2z this algorithm remains too compressive despite being TVD. One negative aspect
of 1tus calculation is the clipping of the extrema with respect to the previous figure,
ataough overall this solution is superior in most respects to Zalesak’s FC1.

By using the Lax-Wendroff fluxcs as the base for the antidiffusive fluxes, the
peublem of overcompression is eliminated from both algorithms. This is at the cost
afsome clipping of the solution’s extrema. The clipping in Fig 5.4 is less than that
in #ig. 5.5, but at the cost of the symmetry of the soluticn. The lack of symmetry is
c#used by the use of a computational velocity rather than a physical velocity in the
liniter in Zalesak’s FCT. Despite the dimensional consistency, this choice leads to
incorrec’. local propagation speeds when the local gradients aze chosen in the limiter,
thus destcoying the symmetry. The upwind bias is more evident in Zalesak's FCT,
but is present in both sulution techniques. This is caused by the first step of the FCT
for Zalesak's algorithm, but in the new FCT, the use of the first step mitigates a lack
of symmetry. |

Figures 5.6 and 5.7 show the impact of the choize of n in the modified-Aux FCT
formulation (and for that matter other implementutions of miters). The lower value
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Figure 8.2: Solution of the scalar advecticn equation with Zalesak's FCT with the
high-order flux defined by second-order central differencing.
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Figure 5.5: Solution of the scalar advection equation with the new FCT with the
high-order flux defined by Lax-Wendroff differencing.
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of n results in solutions that exhibit a great deal of dissipation and clipping of extrema.
Fo: the n = 2, solution is of high quality with the clipping of extrema quite controlled.
This solution nearly equals that of the other FCT forinulations for the square wave.
For the sine wave, despite some clipping, the overcompression has disappeared with
the character of the original profile well preserved.

The symmetric TVD algorithm (second-order in both time and space) produces
results similar to the new FCT, but with a lack of symmetry. This can be cured with
a predictive first step as with the FCT. As Fig. 5.8 shows, both exhibit a fair amount
of extrema clipping and lack of symmetry. These are similar to the results obtained
in Fig. 5.2 with Zalesak's FCT, but are more diffused.

5.3.2 Burgers’ Equation

In all cases, the solutions obtained by using the high-resolution algorithms on Burgers’
equation are quite good in terms of quality. Little would be gained by simply viewing
their profiles (they are similar to the results in [110) for a TVD algorithm). By nature
these high-resolution methods produce results that are first-order accurate in the L,
norm and approach second-order accuracy in the L; norm. In the next four figures
discussed, figure (a) is for time equal to 0.2 when the solution remains smocth, and
(b) shows the error norms (L, Lz and L) at time equal 1.0 after a shock has formed.
For the methods used, each is second-order in time and space with the exception of
the fourth-order FCT method, which is fourth-order in space. Second-order temporal
accuracy is obtained by using a Lax-Wendroff t:'pe formulation. These calculations
are all done with o held constant.

In Fig. 5.9 the solution for t = 0.2 converges ia the expected fashion, but at ¢ = 1
problems are present with the convergence in the L., norm. As the grid is refined, the
L, norm error incrcases rather than decreases as expected. As the grid size is further
decreased convergence resumes, but is quite slow (about order 1/4). Figure 5.10 shows
ti:at the convergence properties of the fourth-order antidiffusive flux do not converge
at a {ourth-order rate and are in fact worse than those shown in the previous figure.
The nonconvergence in the L., norm for intermediate grid sizes for the t = 1 case is
comparable. The new FCT algorithm shows slight improvements over both of these
cases, but still has the same difficulties after a shock has formed in the solution. As
stown by Fig. 5.11, the solutions converge faster than Zalesak's FCT, but are still
plagued by some of the same problems. This behavior is also shared by the symmetric
TVD’s results in Fig. 5.3.2. The symmetric TVD does not converge as well as the
new FCT method, but the nonconvergence problem is not as pronounced although it
is clearly present.

The similarity of the solutions for the two FCT methods and the symmetric TVD
algorithm, and the lack of such a problem in the modified-flux TVD method points
to the form of the limiter as being the problem. The FCT and symmetric TVD use
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Figure 5.9: Convergence of error norms for Burgers’ equation for Zalesak’s FCT with
the high-order flux defined by Lax-Wendroff differencing.
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Figure 5.10: Convergence of error norms for Burgers’ equation for Zalesak'’s FCT with
the high-order flux defined by fourth-order central differencing.
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Figure 5.12: Convergence of error norms for Burgers' equation for a symmetric TVD
algorithm.
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cell-edged limiters rather than cell-centered limiters. This difference requires that
cach limiter has a wider spatial stencil than ihe cell-centered limiter, and as a result
tlie resulting algorithm is not as sensitive to the presence of a discontinuity. This lack
of sensitivity results in a poorer handling of shocks and discontinuities. The FCT is
less diffusive than the symmetric TVD method, and this lack of diffusion inc:ecases
the problem. The results for the fourth-order spatial limiter point out two problems:
because the fourth-order spatial difference is more compressive than the second-order
difference scheme, the convergence difficulty in the L, norm at a shock is increased
slightly. Experiments with a second-order Runge-Kutta time integration scheme show
improvements in the L; convergence of the FCT.

5.3.3 Sod’s Shock Tube Problem

The third problem involves the solution of Sod’s test problem which tests the mettle
of each algorithm against a difficult physical problem. For the FCT methods {in
the modified-flux u = 1/2(|a! - oa?)], the Lax-Wendroff flux is used to define the
antidiffusive flux. All results were produced for At = 0.4Ax and shown for t = 0.24.

Figure 5.13 shows that the results using Zalesak's FCT are rcasonable, but are
polluted with a fair number of nonlincar instabilities. These instabilities are sig-
nificantly worse if the limiter is based on a second- order central differences with
numerous small expansion shocks present in the rarefaction fan. Even with the ex-
tra diffusion produced by the Lax- Wendroff flux, an expansion shock is presert in
the rarefaction wave and oscillations are present in the preshock region of the flow.
The overall quality of this solution is quite poor. The new FCT formulation produces
qualitatively better results that appear to be due to greater dissipation in the scherae.
The expansion shock is no longer present. The overall quality of this solution is not
high because of the considerable smearing of the features of the flow. In Fig. 5.14,
the results show that a great deal of smearing is present except at the shock wave
where the solution is very sharp. In both of these figures the pressure-erlated terms
in the momentum and energy equations are incorporated as source terms rather than
as convective fluxes, and are central differenced.

By computing the first step of the new FCT with Roe’s first-order scheme, and
using an approximate Riemar:n solver to compute the fux correction, the results are
extremely good. As Fig. 5.15 shows, the smearing of a standard FCT implementation
of the new FCT is gone, with the shock being computed with the same crispness.
The rarefaction fan is smooth and in good agreement witis the exact solution. The
resolution of the contact discontituity is somewhat smeared but is azceptable.

The modified-flux FCT (Fig. 5.16) has slightly poorer resoluticn of the contact
discontinuity, but computes the shock in a sharper fashion. The overall quality of
the golution is nearly identical to the previous case. In this case the value of n == 1.5
was used on all three fields. Better resolution oi the contact discontinuity could be
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obtained with the n = 2 limiter. The final two figures are shown for comparison with
the previous figurcs. The symmetric TVD method (Fig. 5.17), gives adequate solution
although the amount of smearing exceeds that of the other methods incorporating
Roe's approximate Riemann solver. The UNO method (implemented with a method
similar to the modified-flux TVD algorithim) was used to compute the solution shown
in Fig. 5.18. This solution is of a quality similar to that found in Fig. 5.16 with
slightly better resolution of each of the features of the flow.

5.4 Concluding Remarks

The modifications proposed in this work on the FCT algorithm of Zalesak have pr«ved
to be quite successful in terms of performance and in terms of yielding a better under-
standing of (he FCT algorithm in general. These modifications give an algorichm that
1s fur: 'ly second-order in both time and space. Also, the extension of this method
to s»stems of equations is a good deal more effective than the typical extension of the
FCT to systems. The notion that the FCT algorithm for certain cases may be TVD
(subject to certain restrictions on the CFL number) is quite gratifying. It is perhaps
more useful to consider the flexibility of the formulation of this FCT with resp--t. to
a wider range of high-order fluxes. This gives the prospect of formulating solutions
that have higher orders of approximation than previously attempted and also have a
reasonable extension to systems of equations.

Futnre work includes the modification of the FCT to include MUSCL-type schemes
as well .s the appropriate generalization of Zalesak's multidimensional limiter to these
types of ™ :thods. As mentioned earlier, these methods, once cast in the appropriate
form. cau be used for implicit time integration where the necessary form is similar
to that foui.d in TVD implicit formulations. Tests on simple test problems indicate
that these methods are unconditionally stable.

The initia’ motivation of this work was to tie together in a more coherent fashion
the various modern high-resolution methods for numerically solving hyperbolic con-
servation laws. This work should be considered a start, with the advances mentioned
above, as progress toward this goal. .

The next chapter explores the topic of this chapter further. The link between flux-
corrected transport and high-order Godunov schemes is shown and explored further.
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Figure 5.13: Solution of Sod’s shock tube problem with Zalesak’s FCT.
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Figure 5.14: Solution of Sod"s shock tube problem with the new FCT.
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Chapter 6.
A Generalized Flux-Corrected Transport
Algorithm: A Geometric Approach

It is written in the language of mathematics and its characters are triangles,
circles, and other geometrical figures without which it is humanly impossible
to understand a single word of it; without these, one is wandering about in a
dark labyrinth. Gaileo Galilei

6.1 Introduction

The work of Godunov [56] has led to many striking advances that have been made in
the numerical solution of (2.3a). In a series of papers, van Leer [120, 60] spearheaded
the modern development of HOG algorithms. Godunov’s method and van Lecr’s
extensions use polynomial representations of the conserved variables in each grid
cell in the process of computing the solution. These piecewise polynomials can be
discontinuous at grid cell interfaces and as such require some closurc at these interfaces
to compute the numerical fluxes. ‘I'ypically this closure uses the local solution to a
Riemann problem through either an “exact” or approximate [63] Riemann solver.

Colella and Woodward {122] advanced the method developed by van Leer with
their PPM. This method is still considered a premier methods for computing the
solutions to (2.3a) [129]. Several theoretical advances have been made as well as the
more practical ones. Harten’s theory of TVD schemes [130, 61 made great strides
toward understanding the theoretical properties of methods like van leer's and those
discussed below. Although these methods were first formulated as cither purely La-
grangian or Eulerian through a combination of a Lagrangian step plus a remap step,
these also can be used in a purely Eulerian context [123]. The methods derived in
this chapter also can be used in cither of these forms, but the description found below
is presented in a purely Eulerian context.

Several different varieties of TVD methods have been introduced, such as the
modified flux formulation from Harten and several “symmetric™ TVD schemes. Roe
introduced one form of TVD scheme [131]. Davis [133] also presents a method of
the same general form. Sweby (132] and Roe [176] present a similar method, but
the limiters arc of an upwind-biased nature. Yee [134] christened these schemes as
symmetric TVD schemes. The general form of symmetric TVD schemes can be looked
at in several different ways: as an advanced form of artificial difiusion, a Lax-Wendroff
method [58) with an additional dissipative flux to ensure a TVD solution, or a TVD
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method that is symmetric in its stencil whenever the limiter is not present. Another
view taken in this chapter, more closely ties this formulation to that introduced by
van Leer. This viewpoint has been used in the derivation of TVD methods by several
authors. The TVD analog to van Leer’s MUSCL schicine was discussed by Osher [179].
Goodman and LeVesque [135] took a geometric view was in deriving a TVD method.

Another modern advection algorithm also can be viewed along these lines. Perhaps
the first modern algorithm to recognize the necessity of nonlinearity in the difference
scheme was the method of tlux-corrected transport (FCT) as introduced by Boris
and Book [59). This method was developed with the recognition of the theorem
of Godunov, which states thal no algorithm can be both linear and second-order
accurate. This theorem does not preclude the possibility of producing a “monotone”
second-order scheme, but simiply states that such a method cannot be linear in nature.
Thus, the FCT was a nonlinear blending of high- and low-order numerical fiuxes,
which ensures the lack of dispersive ripples. lu a series of papers [59, 140, 141, 142, 62},
this method has been revised and extended. The author recognized that the FCT
and the symmetric TVD of Yee were very similar in terms of form and could easily
be unified into a single general algorithm developed in Chapter 5.

At this point it is useful 1o delineate the difference between slope and flux limiters
more closely. This is done from the standpoint of a philosophical differentiation
rather than from a purely technical basis. The slope limiters can be thought of as
being used directly during mierpolation. Flux limiting usually involves methods that
are classified as finite-difference types. ‘Thus slope limiting applies to HOG schemes
and the flux limiting applies 1o TVD and FCT aigorithms. One caveat can be placed
on this classification: it is not stringent. An cxample of this is the ENO schemes
from Shu and Osher [65, 66]. where fiux limiters are used. Previous work with ENO
schemes proceeded from the standpoint of slope .imiters.

In extending the methods to systems of equations, the TVD and HOG type meth-
ods use Riemann solvers, which have many exceptional theoretical and aesthetic ap-
peals. The extension of FC'T. on the other hand. is usually extended in what seems an
ad hoc formulation [143, 144|. In Lagrangian coordinates this might seem somewhat
less so, as the splitting between sound waves and Buid motion is somewhat built in,
but the same principles apply as with the Euler ~quations (see Appendix B). In this
regard, 1 feel that there is no reason why ihe Riemann solvers, which have been so
successful with TVD type methods, cannot be used with FCT.

With this in mind, the generalization of the FCT algorithm from a geometric
point of view is discussed helow. This discussion also holds for the symmetric type
of TVD scheme and serve as an extension of this method. Through the use of ideas
of UNO schemes, these algorithms are exiended to higher than first-order accuracy
in the maximum norm.

This chapter is organized into four sections. T'he second section first reviews mod-
ern high resolution algorithms. The geometric analog to the symmetric TVD scheme
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is then introduced. This method is also extended from a linear to a quadratic re-
construction scheme. Uniformly nonoscillatory schemes are also discussed. Following
this presentation, results for the schemes developed here are given for several test
problems: the scalar wave equation, Burgers' equation and the Euler equations. The
fourth section gives closing remarks and conclusions.

6.2 Method Development

In this section, the unified description of the symmetric TVD and FCT methods is
reviewed. It should be noted that this is in a finite difference form, rather than a
finite volume form. Following this brief review, the finite volume methods as typified
by the Godunov and HOG algorithms are described. A tie between these methods is
drawn along the same lines as the modified flux TVD scheme of Harten is related to
the methods developed by van Leer. Several variants of the geometric FCT is given
along with their description and mathematical properties.

6.2.1 Review of Modern Advection Algorithms

In previous work, | drew parallels between the symmetric TVD methods and the
various FCT methods [6]. Specific parallels between the symmetric TVD methods
and the extension of the FCT as given by Zalesak are concentrated on, with several
improvements suggested for the FCT methods.

The specific form of the symmetric TVD schemes for (2.3a) is

u;'“ = u;.' -0 (i"*§ - i,,%) . (6.1a)
where 0 = At/Az, Az = T4 =T, At = t"*! — ¢, with

fuy=5Us+ )+ 00y (6.1)

being the numerical flux; also defined are 4 = 1(z;+ z;41) and zi} = 1(zj-1 +1;)
The term ¢;, } is the numerical dissipation function, which is the key to obtaining
high-order accuracy without dispersive ripples. For example, the form for this func-
tion for donor cell or upwind differencing is

1
¢,Df! = Ela,-ﬁlA,-,’u ’ (62)

where a the characteristic speed f/8u, and 8448 = Yjn — u;. If the method is
used to solve a system of equations, then some modification in the definition of the
above terms is in order.
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For the FCT, the overall dissipation function is defined by

FCT _ ,DC A .
where ¢4 is the limited difference between the a high-order flux and the donor cell
flux (or another appropriate monotone schesne). This term is also known as the
antidiffusive flux. The symmetric TVD scheme has its dissipation function stated
as [134]
SYM _ 2 _ .
¢,4§ —[(IaH%I—aa“;)Q”% la)*%I]A“}u. (6.’)

where QH% is a function of a the local gradients, A,_}u, A,’%u. and A),g n where
= (6.5)

The actual limiters used are described in detail in Chapter 8.

If the high-order flux used in the FCT is a Lax-Wendroff flux, these two methods
are virtually identical. To show this requires that the flux limiter used in the FCT be
changed slightly. The multipliers on the local gradient terms need to be changed from

o~} to |a] - oa?

as suggested by the author in the previous chapter. In that chapter,
parallels between both symmetric TVD and the modified flux TVD schemes and the
FCT were described. The redefined FCT algorithm is shown to produce TVD results.

The modified TVD method is simply a finite difference analog to a second-order
Godunov method like that of van Leer. For a scalar advection equation, the two meth-
ods are identical if the slope limiter used in the HOG method is cquivalent to the flux
limiter used in the TVD scheme. A HOG method is described by Algorithm 1 with
the only difference being the order of the interpolation used in the reconstruction step
being higher than zero. As stated carlier, this algorithim can take the form of either
a totally Eulerian algorithm, or a Lagrangian solution (the local solution step) with
an Eulerian remap (overall solution step). Higher order schemes are produced with
higher order prescriptions (during the reconstruction step) for the function P;(z),
such as those produced by MUSCL, PPM, UNO or ENO mecthods.

6.2.2 Geometric Symmetric TVD and FCT Schemes

‘I he Lax-Wendroff method (58] is the canonical classical second-order method. This
method produces sccond-order solutions, but with spurious oscillations ncar discon-
tinuities, thus raising the possibility of producing negative values of positive definite
values such as density or pressure. With several observations about the Lax-Wendroff
method and the symmetric TVD scheme (and its relation to FCT) a geometrically
based algorithm can be found. From the standpoint of algorithmic description, ge-
ometric depiction is particularly useful. Normally, the method of Lax-Wendroff is
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Figure 6.1: A geometric interpretation of the Lax-Wendroff method is given. This
shiows how this method consists of a simple linear averaging with an “upwind” cor-
rection to give time centered flux functions.

described as a finite-difference algorithm; however, it also can be described geometri-
cally.

It is well known that the second-order central difference scheme with forward Eu-
ler time ditfc-rencing is unconditionally unstable. This can be easily verified with Von
Neumann stability analysis, but | proceed from a different standpoint. First, some
uomenclature needs to be introduced. The flux functions for difference schemes of the
form are functions of the dep-ndent variables and can be written in terms of interpo-
lating polynomials. Thus, given a piccewise polynomial, P, (z), that interpolates the
dependent variable u, the flux functions can be written

f;(w) = f[P(2)] . (6.6)

With this definition, the problem reeduces to apnroximating the dependent variables
on a grid and computing the value of the interpolant at cell edges.

The Lax-Wendroff m«thod was defined in Chapter 3. The symmetric TVI) scheme
is thought to be the Lax-Wendroff schenie plus some upwind-biased, nonlinear nu-
erical diffusion. The canonical upwind scheme is Godunov's method, which is based
on a geometric derivation. Combining this fact with the above discussion shows in a
heuristic sense that the symmetric TVI) scheme has a grometric analog. Now | will
be somewhat more concrete in the derivation.

Lemma 1 The symmetric TVD method can be defined in terins of the reconstructive
polynomial
+3 z- (L€ |z,,
P,(z) = u, 3;4}( )iz [ 2 ‘n}] ' (6.7)

u, +5,_}(z-1,) ‘X € [z,_},z,]

which is always C* continuous, but not C* continuous unless for instance 5”* = %44
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This cquires that the cldl edge slope s 3 ' be defined by some appropriate slope limiter.

Proof For the scalar adveotion law, f(u) = au. the scheme derived from the

polynommal shown above can be voritten

“;..; , “;. — {/ [l' H) ,)” ( o, ] .. /[[’)_, (-t;"—l)",, (;}’)]} . (6.8)

The decivion about which polynomial to use at each flux interface requires the invoca-
tion of the solution to the Riemann problem, which is simply the upwinding principle
for the «alar case. Taking a > 0 (the case where a < 0 1s analogous), (6.8) becomes

wr =) - a{f [0 (e - s (#20)]) (6.9a)
and substituting the above definitions of r and .t . (3.13a) and (3.13b), gives
'r_,‘—‘I,Q;_—z—-"rj-l_'t)- '——2", (6.9b)
which in turn gives
] at \
"J (:;') =2 u,+.§,,§ (I,*%— T-—I,) ’ (6.90)

with I’", defined analogously. This equation can be simplified to
Az TRY
(o) =i (S2-25) (6.9d)

dcﬁmng.\ ju = i, A.r and setting Ar, = Az,_,. These cquations can be written
as

u;-“ = u; - aa (u;' u;'_,) + oa (l - 222) (A:’u - A:;u) - (6.9¢)

WriLing the cell edge flux for the above scheme gives
ju} = au} + a(l —na)A;;u, (6.91)

which can be rewritten as

a

frep = ; (] +u,,) = la| A,,4u+ (lal - oa®) A;:;u . (6.9g)

where A,:;u can be written Q,,;A” pu- This is simply the symmetric TVD scheme
as given by (6.1h) with (6.4) aud thus is also a geometric analog to the FCT algorithm.
]

In {134), the conditions for the above scheme to be TV are stated. By writing
.3“_5 as Q(ro.r¥ s, - Q"}, the conditions are modified to include the effects
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Figure 6.2: The symmetric TVD schemes geometric analog is similar to the Lax-
Wendroff method. with the major difference being the limiting of the slopes. This
leaves the scheme with C'! continuity, but not (° continuity.

of the time centering of the fluxes (8 = 0, explicit scheme using forward Fuler time
differencing) and are written as

2
Q4 < T (6.10a)
Q)#i Q)#’ 2 2
— e s u(l-v)— 1-v' (6.10b)
and
v<l]. . (6.10¢)

This assumes that both Q and Q/r are positive. Without these assumptions the
conditions above take a more complicated form, but allow a slightly larger set of Q
functions.

Figure 6.2 shows the pictorial represertation of this scheme. For the scalar wave
eyuation, this method and the classic symmetric TVD are equivalent, but for nonlin-
car problems the two methods are as different as Harten’s modified TVD is different
from the corresponding MUSCL, scheme.

6.2.3 Parabolic Symmetric TVD and FCT Schemes

If one proceeds along this line of thought and considers a polynomial approximation,
it is notable that three conditions exist for each grid cell in the above scheme, and
that one degree of freedom is not fully utilized. These conditions are

dpP . dP ]
Py(z,) = u, ;d—:, z:-i) =3,-1 ;'Zf (‘n%) =304
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thus a unique parabola can be fit in each cell. Tabing the form
PO)=A(r-2) +B,(z-1,)+C,. (6.11a)

the coefficients are defined

I I
e 7 N-4 {6.11h)

‘.

-
~

!

23z, )
s + 8 _
”, = ’—’:2_,1 . (6.11c)
and
C,=u,. (6.11d)

Thus. the interpolant can be written for completeness:

.i_gf.i s —.i_
P,(0)=uJ+(’—‘-—2—'1i)(r—x,)+( "231' )(x—:,)’.
, J

This polynomial describes what | call the parabolic FCT when used with the convec-
tive algorithm described by (6.8). It should be noted that the temporal integration
can be accomplished by other means such as a multistage algorithm.

I now seck to prove under what conditions this algorithin produces TVD results.
These conditions define the allowable values of the cell edge slopes, 5, i

Theorem 6 The parabolic symmetric TVD and FC'T method dericed above 19 TV

under the followang conditions:

1. If the slopes .in; can be of opposite sign, the function Q(r~,1,7*%) must be less
than or equal to |4/3].

2. If the slopes .3)“ are required to be of the same sign. the function Q(r~,1,r*)
must be less than or equal to 8/3.

Proof. For the following proof, only the spatially accurate case is studied. thus to
some cxtent this study is limited to the semi-discrete version of the equation. Thus
the TVD conditions [180) shown above are simplified to

ou
-a-‘- = («,A,,‘u - D,A,_*u ’ (G.l?a)

¢, D, 20. (6.12b)
For time integration typically a Lax-Wendroff or Cauchy-Kowsaleski procedure is
applird. which in some sense is characieristic tracing. Runge-Kutta algorithms also
can be used, although for the corresponding composite algorithm, the Runge-Kutta
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methods are not classical in form [160). In general, careful analysis must be applied
to determine the stability requirements.

Examining the case where a > 0, with the case where a < 0 yielding equivalent
results. Given this characteristic speed, (6.12a) with (6.11a) becomes

I CRUOE (LT URY RN CONER ) T

Setting C, = 0 and rewriting the above equation in a form amenable to analysis

produces 0 Q
i} 3 1 14,-
5% = —a [l + (g—:’_:i Y-t~ g—:—;j‘)] 3,-4- (6.14)

It should be noted that all the three parametcr limiters that would be used with the
above formulation are a functionof 3, U and t..c Q iinuters are function conser itive
gradients {132, 176). Putting this form iuto the form usclul for analysis and using the
TVD conditions discussed above

Sl tont)ee m

allows the proper conditions on Q (u) to be established for TVD solutions. If | set
Q,_’ Jrt = Q,_, as a bound and simplify accordingly, the above condition becomes

3Q,44 3 .
a [l + (g—;:i - EQ,_})] 20. (6.16)

This simplification seems a quite reasonable bound in ligi.. of the functiona! form of
the flux/slope limiters.

For the first of the two cascs, the proof is
3 QH- ‘ -
- (o,-, -2 <, (6.17)
which gives the condition that |Q (u)] < */3. This corrcsponis to the limiter of the
“minbar” type that is defined by

f

as |a| = inf (la}. 0], D)
Mo ={ ab | =inf(la], I8 .'~) - (6.18)

ac otherwise

3

where a is a constant that is 0 < a < 4/3 to produce a TVD solution.

Before going onto the second case, certain caveats should be applied to this class
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of limiter. Although the “imninbar™ limiter is a TVD limiter in the sense of Harten's
definition of TVD schemes, it is not a classic “monotonicity” limiter, similar to the
type derived by van Leer [120, 60], and thus has some fewer favorable geometric
properties. The act of not necessarily clipping at extrema yields construction of new
extrema near cxtrema, in the data, which are not necessarily physical. This may
not be much of a problem if one takes the ENO philosophy of simply seeking the
smoothest available interpolant within some local support. Nevertheless, care should
be taken in applying this limiter as the results section shows.

The second case proceeds riuch in the same way and yields a class of limiters that
are very similar to the “classic™ TVD limiters. For the abuve-stated conditions for
positive definite values cf Q (u) changes the forin of (6.17) to

gQ -1<1 (6.19a)
g -}

and 3
-8-0”5 <r, (6.19b)

which gives a limiter such thet 0 < Q (u) < 8/3. In the same fashion as TVD limiters,
the compression applied by the limiter grows with the increasing value of the limiter
maxiumnum. Thus the limiter associated with the scalar, 8/3, would correspond to the
“superbee™ limiter defined by Roe [176]. 0

A three-paramecter limiters of the form discussed carlier are within this class. In
addition, some gencral useful forms of this class of limiter would be

Qy=m|3r.3, 3+ )| (6.20a)
and
Qg =m [gr', g,gr*. % (r" + r’)] . (6.20b)

The order of accuracy of the limiters discussed above provides tl.e parabolic FCT
algorithm. To do this, the methods described by Sweby [132] will be used. Without
difficulty it can be shown that the same region of the limiter curves can be obtained
if the limiters discussed by Sweby are multiplied by 4/3.

A problem with this method common to all typical second-order (or higher) TVD
methods is that they are order one accurate in the Lo, norm [64]. To overcome this
requires that the method be reformulated.

Using the upwind, two paramecter limiters in conjunction with this method would
violate the assumption made is simplifying (6.15) to (6.16). From a heuristic stand-
point, this would imply the use of data at points downwind of the limiter's stencil,
which would lead to instabilities.
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6.2.4 UNO Symmetric TVD and FCT Schemes

To give the method described in the previous section, higher than first-order accuracy
in the L. norm, the symmetric and parabolic schemes are redefined by changing the
form of the slope limiters.

The following lemma motivates the first of these proposed schemes:

Lemma 2 The interpolant defined by (6.7) inlcrpolating in the interval [11_;,1,”]
has a local mazimumn or minimum in this interval if and only is the slopes, 5,_% and
5”* are opposilc in sign.

Proof. 'To prove this, take the derivative of the polynomial defined by (6.7) giving

dP(s) _ | -y 7€ 2,47
dr

(6.21)

.i,,g ze[z,.z,*%] '

A monotone piccewise interpolant has the same sign across the interval it interpolates.
If the derivative changes sign in the interval, an extrema exists in that interval. Simple
inspection indicates that to produce an interpolant with a extrema requires that the
cell-edged slopes differ in sign. This shows that 5,,;3’,_% < 0 produces an extrcma
in the local interpolant. O

Corollary 1 (Lemma 2) If the slopes defining (6.7) are of the same sign, the in-
terpolant is monolone on the interval 2, 113,04}

Proof. To state that the interpolant is not monotone on this interval would con-
tradict Lemma 2 and the definition of monotone interpolation (in a local sense). O

Lemma 3 The parabola defined by (6.11a)-(6.11d) interpolating in the interval [:,_%,z”%]
has a local maximusn or minimum in this inlerval if and only if the slopes are opposile
tn sign.

Proof. ‘Tu prove this take the derivative of the polynomial defined by (6.11a)

giving dP(Z) N 5”i - j"’i 5,,! + i,_i 6.22a
I - ( Ar )(I - .t,')'f' 2 . ( .22a)

By setting the derivative to zero the local minima and maxima can be found by

1 =1,+ oz (3"L+ j’-’) .
2(3,- = 3,44)

By setting the ronditions for a local extrema to lie in the interval

t”’ SI'S:,,,; . (6.22h)
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The values for the slopes that satisfy this inrquality can be found through substitution
giving
$,.120,35,,, <0, (6.22¢)

and by using symunetry this implics that
5,_% < 0 and 5)*} 20 (6.22d)

also satisfies the inequalities. As with Lemma 2, this shows that 5,%5,_% <0
produces an extrema in the local interpolant. In addition, this inequality shows that
if the signs of the slopes are the same any local extreima, lies outside the interpolated
interval. O

Corollary 2 (Lemma 3) If the slopes defining (6.11a) are of the same sign, the

parabola is monotone in the interval I, 5]

Proof. 'To state that the interpolant is not monotone in this interval would be a
contradiction of Lemma 3 and the definition of monotone interpolation (in a local
sense). O

This might cause one to assume that the minbar limiter would suffice here to
provide the correct slopes near minima or maxima in the data. But, one problem is
that the three parameter form of the minbar limiter also would allow extrema to be
found in cells where no such extrema exists in the data (to the left or the night of a
true cxtrema).

Definition 4 (Harten and Osher [138)) Non-oscillatory interpolation is defined
by interpolation P, (z) that has ils number of eztrema in an interval that is not ez-
ceeded by the local extrema in the data, u(z).

An UNO type scheme can be drrived by zonsidering a formulation that is close the
original UNO scheme. These schemnes are also motivated by the desire to have a better
grasp on higher «rder accuracy with the parabolic formulation. 1 begin by defining
second-order accurate candidate slopes for the limiters. Consider the determination
of s, 3 which requires candidate slopes s;_;, 3s} and s The candidate slope
3,41 is already second order in its standard form,

syep = X2 (6.23a)
because it is a centered approximation about z;, b but the other slopes are not.
In order to make these app-oximations second-order at z,, pr 3 corrective term is

needed. By expanding the definition of S0} in a Taylor series about z,_4 and I
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the following approximations are found:

ds
s,ep =8,y +4z, 07| +0(Ad]) (6.23b)
8,-’
and )
s
S04 = %04 ~ Az;yy Z‘; +0 (AI}“) ' (6.23¢)
Ty

where Az, =z,,4 - z,_4.

Theorem 7 The method for polynomial reconstruction described by (6.7) or (6.11a)
are uniformly non-oscillatory by Definition { if the cell edge slopes are prescribed as
Jollows:

5,_; =m (")-§ + .1;_%AI,_|,SJ_&,3,’; b 8;*¥A1’,‘) ’ (6213)
and

3,*% =m (s,_% + .9;_%AI,.SH,§,3,’* - J;**AJ,“) ' (6.24b)
where s’ = ds/dz is defined in a consislent fashion.

Proof. For this proof, as before, | must show that the extrema in the polynomial,
P, (z), coincide with the extrema in the given data. As stated in Lemiras 2 and 3,
an extrema can only occur if 3,_43,,1 < 0. A condition in the data of 5, 1s;,1 <0
also signals the presence of an extrema in the data.

The consistent forms for s’ considered here are

' ("N} = 4k 3544 -")-Q) - ("1’0) ~ 341 4% "'")-i)

ep =M Az Az or m Az Az

(6.25a)
with a similar function for .9;_;. 9;_§ and s; +1- The limited slope functions (6.24a)
and (6.24b) can be written in a form similar to the Q functions introduced earlier:

s s
5,_¥ =m (r' + :’-—i-Az,-hl,r’ - ’—’iAx,) -1 (6.25b)
,-

8,4
and , v
3
51*1 =m|r  + _’;’.AI,', l,r’ - ’_”AI,‘" 3“_* . (625c)
! 3¢} Sie}

These functions take on the same sign as 3,-} and S0 respectively, by the definition
of the minmod limiter. Thus an extrema in the interpolant exists in the interval only
if the extreina exists in the data by Lemmas 2 and 3. O

Remark 21 Each of the methods discussed above can be used as an implicit algo-
rithm. The theory surrcunding the TVD methods [130. 61] gives a firm basis for
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implicit solutions and this basis follows to the application of the methods presented
here.

6.3 Results

The results section of this chapter shows the strengths and weaknesses of the algo-
rithms described above. The scalar wave equation should reveal the basic properties
of the solution scheines in a simple setting. These properties hold with the use of
the method in more complicated situations. Burgers' equation provides results for a
nonlinear equation as well as convergence results, which show the order of accuracy
obtained by the method. Finally, the Euler equations provide an indication of these
algorithms performance with problems with systems of equations. For the remainder
of the discussion, the following nomenclature is used:

o the standard geometric analog to the symmetric TVD scheme is denoted by the
name symimetric,

e the parabolic variant of this method is denoted by quadratic

e the UNO modification of the symmetric mecthod is denoted as the symmetric
UNO, and

o the UNO mndification of the quadratic method is denoted as the quadratic
UNO.

A detailed account of the test problems used is given in Appendix A. Specific
details of their use is given below.

6.3.1 Scalar Wave Equation

To begin to assess the algorithms presented here, a simple standard test problem was
solved. On a domain of 100 equidistantly spaced cells, a square wave 10 cells in width
is advected at a unit velocity with periodic boundary conditions. The CFL number
is held at 1 and the solution proceeds for 300 time steps.

The symmetric scheme performs with the lowest resolution of the schemes dis-
cussed here and has some symmetry problems as shown in Fig. 6.3. This sort on
unsymmetrical behavior was noted by Munz [181] in a studv of solutions to two-
dimensional problerns by high-resolution methods. This lack of symmetry is some-
what alleviated by the use of the quadratic scheme (sce Fig. 6.4). The UNO-type
methods both give significantly better solutions in terms of preservation of maximum
values, but also give rise Lo some controlled oscillations (see Figs. 6.5 and 6.6). The
quadratic method provides both better resolution than the symmetric scheme and
also shows much better solution symimetry. Part of this increase in resclution can be
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Table 6.1: Order of accuracy in several norms for the schemes solving Burgers’ equa-
tion when the solution jis smooth.

Scheme Ly | L; | {
Syminetric 1.8311.53]1.19
Quadratic 1.88 1 1.61 |1.25

Symmetric UNO | 1.94 { 1.65 | 1.07
Quadratic UNO | 1.97 | 1.60 | 1.02

attributed to the more compressive formn of the limiter used with this method (Qq/s
rather than @, and Qg3 rather than Q;). When the same limiter is used in each
scheme, the solution is only slightly better with the quadratic scheme; however, the
quality of the results remains improved with respect to symmetry.

6.3.2 Burgers’ Equation

‘The solution of Burgers' equation ., hese methods can provide more information
concerning the behavior of the alge ‘ithms. By ~omputing the error as compared with
the exact solution an order of accuracy can be obtained.

When the solution is smooth, each of the solution methods is well behaved and
gives convergence at expected rates as shown in Table 6.1. The UNO sclutions are
the most accurate and have the lowest error as well as the highest rates of conver-
gence (especially in the L; norm). When a shock has formed, this situation changes
in several respects. All the methods converge more slowly, but the UNO schemes
converge mor~ slowly than the simpler symmetric and quadratic schemes (see Ta-
ble 6.2). The Lo, norm also shows a “kne.” in each case. This signals a slowing in
the rate of convergence beyond a certain grid spacing. These results are summarized
by Figs. 6.7-6.10.

For times after t = 1.0 the UNO solutions resume their initially high rates of
convergence. The behavior shown near ¢ = 1.0 seems to be temporary and limited
to a short period near the formation of the shock. The poorer convergence may
be related to the width of the finite differsnce stencil used in these schemes. This
behavior was noted in [6] and was noticeable for schemes with three rather than
two parameter limiters. The effect of the three parameter limiters is to increase the
support of the interpolation at each cell edge. This increase is not accompanied by
a subsequent increase in accuracy and because a minimum principle is used with the
limiters, the effect is to lower order of accuracy due to the limiter over a wider set of
grid points.
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Figure 6.3: The solution of the scalar wave equation by the symmetric method using
both a noncompressive, Q,, and compressive limiter, Q,. The Q, (6.3a) limiter
produces a solution which is significantly better than a first-order upwind solution,
but exhibits excessive smearing from diffusion. The compressive limiter (6.3b) shows
an improvement in the solution as a result of reduced diffusion. Both solutions exhibit
some lack of symmetry which is indicative of this method.
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Figure 6.4: The solution of the scalar wave equation by the quadratic method using
both a noncompressive, Q4/3, and compressive limiter, Qs/3- Again, the noncompres-
sive limiter produces a solution that is diffused by comparison to the solution found
with the compressive limiter (6.4b). Both solutions have improved symmetry when
compared with the symmetric method.
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Figure 6.5: The symmetsic UNO solution shows a marked increase in the preser-
vation of the maximum value; however, the effects of a lack of symmetry are also
evident. Both solutions exhibit a leading phase error greater than that present with
the symmetric scheme.

108



1.2

} ®) ' —Exact

Figure 6.6: The quadratic UNO scheme gives maximum values slightly greater than
the maximum value of the initial distribution. The leading phase error present in
the symmetric scheme is improved somewhat. The compressive limiter gives the least
additional resolution in this case.
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Figure 6.7: The symmetric scheme gives good, well-behaved convergence when the
solution is smooth (t = 0.2), but when a shock forms (¢ = 1.0), the error grows by
about an order of magnitude and the L., norm’s curve has a “knee” in it indicating
a reduction in the order of convergence.
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Figure 6.8: The quadratic scheme has better accuracy in general than the symmetsic
scheme, but after the shock forms the *knee,” the solution is somewhat more severe
in nature. For a small range of Az's the solution actually diverges.
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Figure 6.9: The symmetric UNO scheme has better accuracy than either of the pre-
vious methods. The convergence after the shock in the L., norm is worse, however.
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Figure 6.10: This scheme is the most accurate of the schemes shown here, but the
tehavior associated with the L., norm at { = 1.0 is worse. Despite this, the solution
vas more accurate in every 1::¢m than any of the other methods.
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Table 6.2: Order of accuracy in several norms for the schemes solving Burgers' equa-

tion when the solution contains a shock.

Scheme [, Ly | L
Symmetric 1.48 11,191 0.78
Quadratic 1.53 | 1.06 | 0.55

Symmetric UNO | 1.50 [ 0.99 | 0.39
Quadratic UNO | 1.39 | 0.89 | 0.36

6.3.3 Euler Equations

Two test problems are used to test the methods on the solution of systems of equa-
tions. In both cases only the density solutions is given. For the shock tube problem,
an exact solution exists and is used for comparison. In the sccond case, a blast wave
problem, no exact solution exists, therefore a converged numerical solution is used
for comparison. This solution is computed using a MUSCL scheme with a Superbee
limiter on the lincarly degenerate field and van Leer’s limiter on the two nonlinear
ficlds (sec Chapter 8). Two thousand equidistantly spaced grid points are used with
a CFL number of 0.95.

The results for these problems are given in Figs. 6.11 6.14. In gencral, the re-
sults of the previous section hold up for these problems. The symmetric scheme (see
Fig. 6.11) gives the lowest resolution results, while the quadratic UNO scheme (see
Fig. 6.14) gives the best results. The syminetric UNQO scheme gives good resolution,
out also suffers from some nonlincar instability resulting in oscillations. These oscil-
la*ions arc associated with the end of rarcfaction waves as shown by Fig. 6.13. Both
of the quadratic methods give better resolution of shocks and contact discontinuities
than their symmetric counterparts.

In the shock tube problem. the solutions are all very similar with the resolution
of the contact discontinuity being the primary difference between the micthods. The
quadratic UNO method also improves the smearing of the rarefaction wave. In the
blast wave problem, all the methods reproduce the left of the two density peaks and
all of themn destroy the contact discontinuity to the left of that peak. The pritnary
differences are in the area of resolution of the right density peak and the degree of
filling in of the rarefaction between the peaks. In both cases, the quadratic UNO
scheme excels by comparison.
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Figure 6.11: The solution of Sod’s shock tube problem by the symmetric scheme is
quite good except for some smearing near the contact discontinuity. The solution to
the blast wave problem shows several important features also related to the smearing
of contact discontinuities leading to the clipping of the right peak and the nearly
ccmplete loss of the discontinuity at X = 60. The filling in of the gap between the
peaks results from smearing in rarefaction waves.
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Figure 6.12: The overall results using the quadratic scheme are very similar to the
symmetric scheme. The resolution of the solution is enhanced in both cases. This is
especially noticeable at the shock in Sod’s problem and in the left peak and rarefaction
wave between the peaks in the blast wave problem.
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Figure 6.13: The symmetric UNO scheine gives much better resolution of contact
discontinuities as shown by both figures. The price is several oscillations. One can
be seen to the left of the contact discontinuity in Sod’s problem. The results for the
blast wave problem are quite impressive except for the dip to the left of the left-most

contact discontinuity.
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Figure 6.14: The quadratic UNO scheme seems to have the good aspects of the
symmetric UNO scheme without the oscillations. For both problems, the resolution
is enhanced.



6.4 Concluding Remarks

This chapter has presented an extension of the previously derived symmetric TVD
methods to a geometric analog very similar to MUSCL type methods developed by
van Leer. This extension has also enabled the derivation of new methods involving
parabolic interpolation and the ideas of uniformly non-oscillatory methods. Through
the symmetric TVD method’s connection to flux corrected transport methods, these
methods also tie that group of algorithms more closely to other modern algorithms.

These methods have been used to solve several test problems and have proved
successful behaving as expected. Each of thesc newly derived method represent and
improvement over the symmetric TVD method.

The topic of limiters to use with FCT methods is concentrated on in the next
chapter.
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Chapter 7.
FCT Limiters

A new way to pay old debts. Phillip Masiinger

The limi.ers used with FCT algorithms fall into two categories: the classic type
developed by Boris and Book and the generalization of Zalesak. ‘This study started
as an attempt to explain the less than stellar performance of the FCT schemes on a
variety of problems and expanded in scope from there.

7.1 Classic FCT Limiters

The limiter used in the FCT methods developed by Boris and Book is nearly identical
to the minmod limiter discussed in Chapter 8. The main difference is the nature of the
arguments applied to the limiter. These arguments are the local gradients multiplied
by the inverse grid ratio (Axr/At) and the antidiffusive flux. This makes it a three
argumrent limiter with support identical to that found in the symmetric TVD scheme.
The classic FCT limiter is

m(fiy07'D, i, 07 A, i) (1.1)

This limiter can be analyzed by assuming that jl"i = %IaIA“;u and factoring

1 1a) out of the FCT limiter and writing the result in a ratio form
QreT (r'.l.r’) = m(l.2u"r',2u"'r‘) . (1.2)

In this cquation r~ = A,_%u/A,,gu andr* = Aj,gu/A,,%u. This form is equivalent
te. the form used for three argument TV limiters as was discussed in Section 8.3.3.
By inspection. one can see for v # 1 this limiter is not TVD because its result
is larger than two and that the result grows infinitely large as v |} 0. Figure 7.1
shows the limiter for two values of v. The limiter is not TVD for explicit time
differencing. This does not account for the stabilizing influence of the diffusive step
in the solution algorithm. In Section 8.3.5, the ULTIMATE limiter is discussed. It
has some similarity to the FCT limiter and as such the experience with the FCT can
carry over.

As discussed in Chapter 5, this can ecasily be modified to rid the scheme of the
need for an antidiffusive step by changing the limiter to

m ([."’;.;4,_}.'3)_%1:.;1”;.’3";11) . (7.3a)
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where

p=la|, (7.3b)

or

= |la| - va . (7.3¢c)

An entropy correction as described in [182] can be applied to these definitions. This
modification makes this scheme TVD and significantly improves its solutions espe-
cially for systems of equations. This formulation also allows the FCT to be used as
an implicit algorithm in a similar manner as other TVD algorith:ns.

A second formulation based around the modified flux TVD) schemes was also given
in Chapter 5,

minmod (a,b,n) = sign (a) max | 0, min (n|a|,sign (a)b),
min (|a| ,n sign (a) §)] , (7.4)

which for n = 2 gives the superbee limiter developed by Roe {176]. To get the
implementation correct in the sense of a FCT method this becomes

minmod (n) =sign (/H_;)maxlo mm( le}I nsngn( "’)a_’A) }u)
min (no"%lA,,%ul.énslgn( ;4})/"0)] : (7.5)

This scheme is closer to the moditied flux TVD formulation and produces a family of
limiters shown in Fig. 5.1.

7.2 Zalesak’s Generalization

Zalesak (62} redefined the FCT limiter to make it more general. The resulting lim-
iter is necarly identical to the original FCT limiter in one dimension, but has a true
multidimensional form. Zalesak also made the prescription of the antidiffusive fluxes
more general, with the definition bcmg simply stated as the difference between the
low- and high-order fluxes, jfi = f”} ”; The low order flux, ,4} could be

any monotone numerical flux and the high-order flux, f ) ’ b could be specified by any
high-order flux.

Algorithm 3 [Zalesak's fluz limiter [62))

1. Sum all antidiffusive fluxes going into, A}, and out of, A7, a cell. In one
dimension this is expressed as

A} = max (f2.1.0) - min (f2,,.0) . (1.6a)
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Figure 7.1: The classic FCT limiter is shown for v = 0.25 in Fig. 7.1a and v = 0.5
Fig. 7.1b. Both of these figures show that where r* < | the limiter is very compressive,
but not second order in nature.



and
A; = max (f#,4,0) — min (f2_,,0) . (7.6b)

2. Find the maximum, u™?*, and minimum, u™* values locally, and define

M} =07 (u* - 4;) , (7.6¢)

and
M; =0 (4; - ul™) . (7.6d)

For example uT* and u® could be compnted with the following relations:

u™ = max (4,1, G;,8;41) (7.6e)

and
u;"‘" = min (8;-y, i&;,4;43) (7.61)

3. Compute

Rt =m(1,M}/A}) (7.68)

and
R; =m (1, M} /4;) . (7.6h)

4. At each cell edge, k, on the cell, j, compute
C: = min (R}, Ry) , (7.6i)
if /A > 0, otiierwise compute
Ci = min (R} ,R;) . (7.6j)

5. Finally, f€ = C\f8.

6. Zalesak also states some quality-enhancing corrections based on previous expe-
rience with the FCT

Cisy =0, (7.6k)
if
ii.o} (41 — ;) <0, (7.61)
and
i;*l (3, ~ 6,1 <0 or i}'q (Gj93 = G;01) < 0. (7.6m)

The modiiy:ations made in the previous section can be applied to this limiter
rather easily wiith by changing o~! in step 2 to o as defined in (7.3b) or (7.3¢). This
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change also allows the diffusive first step to be avoided without negative consequences.
‘The resulting algorithm is given below.

Algorithm 4 [Zalesak's modified flur limiter]

-

;8 cell.

1. Sum all antidiffusive fluxes going into, A}, and out of, A

2. Find the maximum, u}™*, and minimum, u;'“" values locally, and define

M} =pur — ), (7.7a)
and
M; = p(u] - u™e) (7.7b)
3. Compute
1 =m(1.M)A}) (7.7¢)
and
I =m(1.M;/47) . (7.7d)

4. At each cell-edge, k, on the cell, j, compute
Ce = min (R}, R7) (7.7¢)
if /& > 0 (the antidiffusive flux f! - f£), otherwise compute

Co=min (R} R) . (7.76)

5. Finally, f€ = C.f8.
6. Use the quality corrections substituting u, for u,.

Lemma 1 For a second-order spatially accurate high-order fluz, the Zalesak’s modi-
fied fluz timiter produces a scheme equivalent to a symmetric TVD scheme with a Q
Junction of

Q}'f{ =m (2pA,_}u,pA"*u.2pA"’u) . (7.8)

Proof. For u defined by (7.3b), the appropriate high-order flux is the second-order
central difference flux. For u defined by (7.3¢c) it would be the Lax-Wendroff flux.

For both cases, |
,.;’} = 1‘5-’3,4" ' (7.9)
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if the antidiffusive flux. When u, is a local maximum or minimum, then the limiter
produces a value of zero. | proceed assuming that u is monotone and increasing on

the interval [z,-,2,43). This inter:al is also used to determine uT" and u™*. The
case where u is monotone decreasing is similar. Cuzsidering cell edge j + 1, ]‘;" > 0,
thus I must find R}y, and ;. Inthis case A7 = /3 and Af,, = f7,1, (4] = A},,).
Because u is monotone increasing, " = u?_, and uTyy = ul, ;i thus M), = A au
and M;” = A, -u. From these relations and the formulas for R} and R}y, it can Le
seen that

o., *
C,yy = min (1, M, 1’?—') . (7.10a)
A: A:*n

Inspection shows that the terms in this limiter are identical to those asserted if the
limiter is written in ratio form. When coribined with the conditions for a local
minimum or maximum, the minmod limiter is:

Cpap = gm (12, 20%) . (7.10b)

By checking the form of the symmetric TVD schemes, it can be seen that this has
the form of an upwind flux plus some second-order centrally differenced high-order
flux multiplied by a limiter (see Section 4.5). Subtracting the low-order flux from the
symmetric TVD flux gives (for u = |a| — 0a?)

.:;?'D = [(Ialﬂl - “34;) Cn}] 4,44y, (7.10c)

equating terms gives the desired result. A similar result is obtained with o = |a|. O

Remark 22 For higher order spatially accurale fluzes, the qualily factors imposed
at the end of the limiter become important (see Algorithm 3). These factors make
sense in a heuristic way and definilely improve the limiters performance, but the
properties of limiter are more difficull to determine in this case, although it appears
to be TVD from ezperimental evidence. For the second-order case discussed in the
previous lemma, these faclors are immalerial.

This scheme is TVD in one dimension under the conditions stated in the following
theorem:

Theorem 8 Zalesak's modified fluz limiler with @ second-order spatially accurate
high-order fluz is TVD under the following condilions

1. The values of u* and uj™® rre taken from the set of points u}._,, u7, and u},,.
2. For o defined by (1.55), |v] < 1.
3. For o defined by (7.3¢), |v| < 1.
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Proof. The conditions for a scheme to be TVD are given in Theorem 6. Using
the results from Lenima 4, the proof can proceed from the standpoint of proving that
a given himiter produces a TVD scheme. To ease the analysis, Zalesak's limiter is

written in the form equivalent to a symmetrie TV scheme (see Lemma 4):
Cap EQup=m2r . L2rt) (7.11a)

where r¥ = M2 /A% with A and M defined by the moditied FCT flux limiting algo-
rithm. As given in [134]. the conditions for this limiter to assure a TVD algorithm
are

Q<. (7.11b)
Q’_’* <2_a, (.11¢)
r 14
‘i'_:i<':’_2, (7.11d;
r [ 4
and
v<1. (7.11¢)

These conditions should be compared with those given in Section 8.3.3. The condition
(7.11€) is casily mect as is (7.11b), regardless of the definition of u. For p = |af, the
conditions of (7.11c) and (7.11d) result in a limiting CFL number of v < % When
s = la} — va the right-hand sides of (7.11b)-(7.11d) are divided by | — v, For the
given limiter, the CFL condition now becomes v € 1. This completes the proof. O

Suitable gencralizations can be made for implicit TV D schemes. These proofs do not
extend to multiple dimensions. but provide soine insight to the schen«'s probable
performance.

‘This method can also be applicd to HOG schemes by extending the generalization
made above to apply to the reconstruction step of Godunov's method. Low-order
monotone fluxes are analogous to reconstructing u by piecewise constant functions
cqual to u,. The antidiffusive fluxes could be made into ~antidiffusive™ gradients or
the difference between higher order polynomial reconstrictions and the low-order one.
There is some ambiguity with the dcfinition of the comparison gradicnts defined by
ME, but this can be rectified by several observations. These siould be converted to
gradients of similar definition, but in keeping with the FCT limiters of the past, these
gradients should be multiplicd by two. Previous FCT limiters had this effectively
done by the limiter’s construction and is an explanation for the highly compressive
nature of FCT schemes. Low multiples can be chosen for this limiter to achieve
greater dissipation. The remainder of the HOG algorithm can proceed conceptually
without any changes.
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Algorithm 8 [Zalesak's HOG slope limiter|

1. Definc “antidiffusive”™ slopes, s°, as PL

;racell

2. Sum all “antidiffusive” slopes going into, A}, and out of, A
3. Find the maximuin, u7***, and minimum, u;"‘" valucs locally, and define

I;': = n-LS-z—"—_.—'L ’ (712&)
and n min
M} =nt2t (7.12b)

where 1 < n < 2 and with Az™* and Ar™" being the appropriate distances
from z, to z™* and s7*", respectively.

4. Compute

Rt =m(1,M}/A}) (7.12c)
and
R; =m(1,M;/A;) . (7.12d)
5. At cach cell edge, k, on the cell, j, compute
Cy = min (R, A7) (7.12¢)
if s{ > 0, otherwise compute

Ci = min (R? . R;) . (7.120)

6. Finally, s = C,sf.

Theorem 9 Zalesak's HOG slope limiter is TVD wnder the following conditions and

the values of uP** and u™® are taken fxm the set of points u}_,, u}, and u},,.

Proof. The proof is nearly identical to that given in Theorem 8, but uses the
generalization of symmetric TVD schemes to a HOG formulation (see Chapter 6). 0

7.3 Results

This section presents results for some of the limiters described in the pervious sec-
tions. The results are limited to the scalar wave equation and Burgers' equation. No
attempt is made Lo present resulls for all the limiters given above, but the types of
limiters introduced here are discussed with regard to their performance in relation to
resolution and convergence. Table 7.1 skows a list of the limiters considered in the
results and the abbreviations used in referring i them below.
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Table 7.1: Abbreviations for the methods used in this study.

Limiter Equation | Abbreviation
Classic FCT (7.1) FCTC
Zalesak's FCT (7.6a)-(7.6m) FCTZ
Modificd FCT (7.3a) FCTM
Modified Zalesak's FCT | (7.7a)-(7.7) FCTZN

7.3.1 The Scalar Wave Equation

In this section using various limiters, the scalar wave equation is solved by the methods
deseribed i this chapter. Two initial conditions are used for the analysis: a square
wave with a width of 10 cells and a sin? z wave (half of a period) of a width of 25
cells. Both tests are conducted for 500 time steps with a CFL, number of one-half.
The advective velocity is taken to be unity.

For the FCT type limiters, a Lax-Wendroff flux is used for the high-order flux
in cach case. In general, the FCT schemes all compete quite well with the best of
the three argument limiter-based solutions. The changes required to make either the
classic or Zalesak's limiter TVD tesult in small drop in resolution, but it is hardly
noticcable. It should be stated that each FCT scheme is TVD for the cases shown.
One problem that scems to plague all the three argument limiter-based schemes is
the qualitative shape of the convected profile (its lack of symmetry). The FCT-based
solutions seem to aggravate this problem somewhat when compared with more classic
TVD solutions. Other resuits are given in Tables 7.2-7.4. The numerical viscosity
results are exgplained fully in the following chapter.

A simple change to the FCT limiter can result in a large payoff. By making the
limiter upwind biased, the performance of the scheme improves dramatically (this is
explored in more detail in the next chapter). Staying with the scalar wave equation
with a > 0 the classic FCT limiter would become

m(f,4.07'8,44) . (7.13a)
and Zalesak-type limiter would only need modify the choice of C, to
Co=R; . (7.13b)

if fC > 0 and otherwise
Cy= It (7.13¢)
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Table 7.2: L, error norms with minimum and maximuin values for the square wave
problem.

Limiter | Minimum | Maximum | L; error
FCTC 0.0000 0.8376 5.85 x 102
FCTZ 0.0000 0.8310 5.95 x 10-2
| FCTM 0.0000 0.7923 | 6.35 x 102
FCTZN 0.0000 0.7782 6.42 x i0~?
FCTCU 0.0000 0.8377 5.85 x 10~2
FCTZU -0.0522 0.8899 5.75 x 10~2
FCTMU 0.0000 0.8096 5.99 x 10-?
FCTZNU | 0.0000 8090 5.99 x 1672

Table 7.3: L; crror norms with minimum and maximum values for the sin?z wave
problem.

Limiter | Minimum | Maximum | L; error

FCTC 0.0000 0.9509 2.91 x 10-2
FCTZ 0.0000 0.9511 2.99 x 10-2
FCTM 0.0000 0.9556 2.93 x 10-2?

FCTZN | 00000 | 09523 [3.00x10"?
FCTCU | 00000 | 09514 [292x10-?
FCTC | 00218 | 09716 | 3.22x 1072
FCTM( ' 00000 | 09587 |3.02x10°
FCTING | 4itdy | 09587 |3.02x 102
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Figure 7.2: The scalar square and sin? z wave solutions using several FCT limiters
with a Lax-Wendroff high-order flux.
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Table 7.4: Numerical viscosity and total variation for both scalar wave equation
problems.

Limiter | ¥ r square | TV square | L7 sin?x | TV sin®x
FCTC 26.67 1.68 16.99 1.90
FCTZ 27.44 1.66 17.81 1.90
FCTM 31.09 1.58 18.52 1.91
FCTZN 31.04 1.56 18.31 1.90
FCTCU 26.64 1.68 16.97 1.90
FCTZU 27.20 1.89 19.14 2.0
FCTMU 29.60 1.62 18.16 1.92
FCTZNU 29.60 1.62 18.16 1.92

‘These schemes are denoted by the same nomenclature as used above, but with a “U”
at the end of the acronym. For the classic FCT limiter the effect of this change is
minimal. For Zalesak's limiter, the impact makes the solution oscillatory. For the
modified limiters there is an improvement for the square wave problem, but the sin?
problem the cfiects wash out. The tabular data reflects this, as does Fig. 7.3.

7.3.2 Burgers’ Equation

This section of the chapter centers around the order of accuracy obtained with meth-
ods in conjunction with limiters and their subsequent solutions. To accomplish this,
a standard test problem using Burgers’ equation is used. The problem consists of an
initial condition of sin(z), z € [0,2x]. At ¢ = 0.2, the solution is smooth, and at
t = 1.0, a shock has formed in the solution. It is at these times that the accuracy
of the solution is assessed. The problem is solved with 10 grid cells followed by 1000
grid cells.

The results for this test problem are given in Tables 7.5 and 7.6. The FCT limiters
seem to suffer from poor convergence characteristics. In general, the modified FCT
limiters are more efficient and provide resolution on conrse grids.

7.4 Concluding Remarks

In this chapter a number of limiters have been revicwed and their properties exam-
ined. In addition, several limiters have been ir.iraduced ot reformulated and analyzed

within a common framework. The impact of limiters on high-resolution numerical
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Figure 7.3: The scalar squase and sin? z wave solutions using several FCT limiters
with a Lax-Wendroff high-order flux and upwind biasing.
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Table 7.5: Order of convergence in several error norms for Burgers® equation at ¢ = 0.2
when the solution is snicoth,

Limiter | L; | Lz | Lo
FCTC 2.00 | 2.01 | 1.74
FCTZ 1.97 } 1.67 | i.13
FCTM |187]158]1.12
FCTZN |1.91]158]|1.08

Table 7.6: Order of convergence in several error norms for Burgers’ equation at ¢ = 0.2

when the solution has a shock in it,
Limiter | L; | Lz | Lo

FCTC |1.42]0.89]0.33
FCTZ 1.46 | 0.91 | 0.33
FPCTM |1.49]0.94 | 0.37
FCTZN |1.34|0.80 | 0.28
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solutions hz. also been demonstrated. The importance of limiiers on the solution
of the equations is undeniable. The quality of solutions is directly traceable to the
limiters because they are the heart of the numerical schemes.

More study of limiters is warranted in light of these results. As discussed carlier,
limiters can impact steady-state solution convergence. Some study of this phenomena
is needed. Additionally, both TVB and generalized average limiters should studied in
order to give more systematic manucs Lo choose the constants used with *he limiters.

The next chapter explores the topic of limiter more generally and in more detail.
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Chanter 8.
TVD and Nearly TVD Limiters

The road to resolution lies by doubt. Francis Quarles

8.1 Background

Godunov gave the impetus for the development of modern high-resolution methods
with his paper [56). Boris and Book [59] realized that Godunov's theorem meant
that a second-order “monotone™ algorithm could be constructed if it were nonlinear
in nature. In deriving their FCT algorithm, they introduced limiters as a means to
assuring second-order accuracy with “monotone” results.

8.2 Introduction

This line of thought was also followed by other pioneers in the field. Van Leer used a
nonlinear limiters function in defining what has become known as the classic MUSCL
algorithm {119]). Harten and Zwas used a similar formalism in deriving the hybrid
method [146), as did Hasten with artificial compression method [183). The methods
developed by van Leer and Harten took the form of switching functions between high-
and low-order schemes. Thus the high-order scheme would be used wherc the solution
is smooth, and the low-order solution is used near discontinuities to guard against
the formation of oscillations.

Van Leer extended this line of thought more dire-tly to a high-order catension of
Godunov's method in (120, 60). The limiters were used to dcfine polynomial recon-
structions of the dependent variables used to derive difference approximations for the
numerical fluxes. This general line of thought led to schemes known as HOG schemes.
These schemes can be viewed similarly to the switching schemes discussed previously.
The limiters are used to blend high- and low-order approximations guarding against
oscillations. The major difference is the inclusion of the Riemann problem in the
solution scheme, thus embodying the essence of upwind weighted differencing.

The gencral form of limiters defined in the FCT schemes and by van Leer's HOG
schemes were used to define TVD schemes. larten [130, 61) introduced the concept of
nonlinear TVD finite difference schemes. This concept was also used by Roe [131, 176},
Sweby (132], and Davis {133} to define a class of schemes based on TVD corrections
to the Lax-Wendsoff (58] scheme. This work was summarized by Yee [134) where
onic member of this class of schemes was dubbed as the “symmetric TVD" scheme.
In recent years, several authors have made firmer connections between FCT and
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TVD/HOG methods [184, 185]. | have written about this relation in Chapters 6
and 5. In those chapters, the relation between the FCT method as stated by Zalesak
and the symmetric TVD schemes and subsequently the relation to the symmetric
'TVD scheme to HOG type methods are explored. This line of app:oach can benefit
all forms of high-resolution solution of hvperbolic conservation laws by adding a larger
degree of syncrgism between these various forinulations.

‘This chapter has been organized into four sections. The next section describes a
wide variety of limiters used in the construction of high-resolution algorithms. This
exposition includes material applicable to TVD) and TVB schemes as well as gen-
cralizations to limiters generally denoted by the label, “rearly TVD." A number of
limiters discussed in the third sections are used to solve the scalar wave equation and
Burgers' equation. These results are given and discussed in the fourth section. The
final section discusses conclusions.

8.3 Description of Limiters

In my opinion, this subject has been given inadequate coverage in the literature
despite its relative importance to the derivation of nonoscillatory high-resolution dif-
ference schemes. Sweby [132, 186, 187] has given the most widely referenced coverage
of the subject. Roe (131, 176] also gave attention to the subject. A more detailed
discussion of these references is given in the following sections.

The work contained in (132] and [176] is limited to an upwind-Diased limiter
applied to a TVD Lax-Wendroff scheme [133, 5, 134]. Roe’s work given is- (131}
applies to a TVD Lax-Wendroff scheme where the limiter is not biased with the
wind, which has become known as the symmetric TVD schemes. Because the linuter
is cell-edge centered this requires the limiter to use three arguments rather than two
as in the upwind-biased case (also see (8, 6, 134]). This is significant in algorithmic
performance as noted later in this chapter. Munz (181} surveyed a number of liraiters
with relation to a HOG scheme for a scalar two-dimensional equation using operator
splitting (see Appendix F). In this work problems with both symmetry and resolution
were noted with symnmetric TVD schemes.

8.3.1 General Requirements

To begin the discussion of limiters, a concise definition is presented.

Definition 5 (Limiters) A limiter is a mechanism thal imposes specified constraints
on the computation >f the numerical fluz producing higher order accuracy, but also
controlling oscillations and sometimes improving the resolution of discontinuities adap-
tively.

This definition fails to encompass the full range of limiters given in the literature. It
docs give the ger2ral concept embodied by limiters. The constraints in many cases are
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taken to be the restriction to TVD discretizations of a scalar hyperbolic conservatinn
law. Often, as is the case with the FCT, the limiter is defined in a more somewhat
heuristic manner, namely to keep new extrema from being formed in the solution.

At this point, it is useful to delineate the difference between slope and flux limiters
more closely. This is done from the standpoint of a philosephical differentiation rather
than from a purely substantive basis. The slope limiters can be thought as being
used directly during interpolation. Flux limiting usually involves methods that are
classified as finite-difference types. Thus slope limiting applies to HOG algorithms
and the flux limiting applies to TVD and FCT algorithms. One caveat can be placed
on this classification, it is not stringent. An example of this are the ENO schemes
due to Shu and Osher [65. 66, 188).

Remark 23 In general slope limiting refers to the reconstruction (projection) phase
of the solution process. Fluz li niting infringes on the solution in the small (evolution)
porlion of the solution. In [1417]. van Leer admonishes this prectice. The evolution
process can aid in the hn:sling poocess through the delermination of the domain of
dependence for the limiter. This principle has been used successfully with upwind-
biased ccll-edge type TVD Laz-Wendroff schemes or, for that maller, linear schemes
such as the Beam-Warming scheme.

Typically. a limiter is used to choose the sinoother of several gradients with some
caveats imposed to improve the quality. This can also be viewed as a form of averaging
which is nonlincar rathe~ than linear in nature. The averaging can also have the
condition of setting its value to zero if the arguments differ in sign. This condition
with apr.ropriate ;'mits on the magnitude of the resultant gr.adient in relation t« other
local gradients results in “monotone” solutions. Other li'ni s of the resultant icheme
can be applicd to give something closer to an ENO type of philosophy.

The limiter functions have a general form given by the “m'nmod” type

Q = m(a,b) , (8.1a)
or
Q =m(a,b,c) , (8.1b)
where
m{a,b) = sgn (a) max [0, min (ja|,sgn (a) b)) , (8.1¢)
or
m (a,b,¢) = sgn (a) max [0, min(|a|,sgn (aj b,sgn (a)c)) . (8.1d)

This definition can casily be extended to an arbitrary number of arguments. As one
can sce, the minmod limiter returns the minimum of the arguments unless they differ
in sign. If they differ in sign, the result is zero. As 1 show in Section 7.1, this form
was introduced with the FCT method of $oris and Book [59).
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Figure 8.1: The computational stencil of the main limiter types in one dimension.
Brackets indicate which points are used in evaluating local gradients. The modified
flux or cell-centered limiter is centered about grid point j, the symmetric limiter is
centered about cell-edge j — 1, and the upwind-biased limiter for cell-edge j — 1 is
centered about cell j — 1 for a > 0. For a < 0 it would have the same stencil as the
cell-centered limiter.

Limiters are centered in some sense. They can be centered about a grid point,
cell edge, or biased by the direction of the flow as shown by Fig. 8.1. The appropri-
ate definition of this centering is determined by the requirements of the underlying
polynomial reconstruction. The limiters are defined at the points where a gradient of
some sort is needed in the scheme definition.

Roe [176] and Sweby [132] introduced a formulation of these limiters that is pas-
ticularly useful for analysis. Yee [134] also used this form in her analysis of symmetric
TVD schemes. In this form, the function Q;,} is rewritten in terms of ratios of local
gradients denoted by r = A.u/A,-,iu under this formulation. The minmod limiter
has a slightly modified form

m(a,b) = max [0, min(1,r)]a, (8.2)
with r = b/a, which has an similar functional form for three arguments.
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Roe and Sweby also gave some desirable properties for limiters to have such as
symmetry (applicable to two argument limiters)

Q(r)

r

Q(;‘:) . or Q(a.5)= Q(8,a), (8.3a)

and homogeneity
Qppr) = puQ(1,r) . (8.3b)

Although the homogencity propesty can casily be generalized, the symmetry property
is in need of proper generalization for limiters using more than two arguments.

Another property discussed by Roe [176) is that of lincar averaging. Quadratic
data could be exactly advected with the use of a function of the form

Qaby=pa+ (1 —p)b, pef0,1], (8.3¢)

because in quadratic data the differences in gradients vary linearly. This characteristic
cannot be used with TVD limiters because this would produce a linzar algorithm and
produce oscillatory solutions by virtue of Theoremn 3. Some of the characteristics of
this property can be recovered when the flow field is smooth and resolved.

Although this is not commonly stated, the limiters used in TVD schemes are
convex and consistent averager of their local data’s gradients. This is equivalent to
stating that the schemes are second-order accurate because the limited gradients and
the resulting schemes are convex averages of a family of second-order linear schemes.
Thus a general form of limiters is

Q(a31,83,...,8a) = €18y + 23+ ... + CaGp , (8.4a)
where :
¢, 20,j€(l,n, (8.4b)
and .
Ye=1. (8.4¢)
1)

Consistency would dictats: that
Q(a,a,...,a)=a. (8.4d)

As discussed in more detail below (Sections 8.3.3 and 8.3.3), the commonly used TVD
limiters have this property whezcas some other limiters of similar design (such as the
FCT or ULTIMATE limiters) do not.

One key point in this entire discussion is that the limiters in conjunction with
upwind principles attempt to balance resolution with the need for dissipation in the
algorithms. It is this trade off that is vital to the success of schemes. It is explored
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in the next section.

8.3.2 Numerical Dissipation

The view can be taken that the limiter is simply a “fancy” form of artificial dissipation.
This is true to a certain extent when considering the classical depiction of artificial
dissip.ation, but the diflerence is that the choice of dissipation cocfficients is nonlinear.
To sce this, | recall the obscrvation given in [30} that an upwind-differenced scheme
solves the following parabolic equation to second-order accuracy:

o 9 u
a:‘ a—t:—lalA:(l—v)a, (8.5)

This cquation can be derived by taking the difference between the numerical schemes
for upwind differencing and Lax-Wendroff's method. Taking this approach a sort of
numecrical viscous stress can be defined as

LW
riny =Jin = Jih- (8.6)

Using the approach outlined above for HOG-type algorithins yicld a useful measure
of a limiter's effect on the solution. These relations are given for a scheme defined by
the following polynomial:

P, (z) = u, + AuE %) A‘ ) zels [£,-5+%,04] (8.7)

where S:u =Q;4,, yu. Using a Lax-Wendrofl-type time discretization and ceanstant
mesh spacing gives for upwind differencing '

AN = % [(a=lal) (1 + ) (Qs4s = 1) + {a+1a) (} = ) (1 - Q;)} ;44 , (8.8)

where Q is defined as _
Ayu
A"’u

Q= (8.9)

For Lax-Fricdrichs’ differencing uscd as the underlying E-scheme gives
A
TLRN = TI (a - -I%i) (1+0)(Qyer~ 1)+ (d+ l-:‘l) (1-v»)(1- QJ)] AM}“ .
(8.10)

Remark 24 For general use in compuling the quantily ropn the difference between
the Lax- Wendroff flux and a certain high-order fluz is used.

Several observations can be made by carefully analysing these functions. For an
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upwind-based schemne, the vizcous stress is with the gradient 4, slu whenever the
limiter gradient is taken to be the minimum pradient or less; however, if the limited
gracient is larger than one of the locs! gradicnts, then the stress can be against the
gradient or anti-diffusive. The second of these two cases leads to compression in an
algorithin. Geometrically, the orientation of the cell averages becomes inverted at
the computed cell-edge values. If this persists for many time steps, it would lead to
a disastrous instability, but the nonlinear nature of the limiters guards against this
occurrence.

This is of some consequence with the Lax-Friedrichs-based scheme (or similarly
bascd schemes such as a local Lax-Friedrichs [65, 66) or the HLLE solver 130, 128)).
In most cases, t. e diffusive effect is enhanced by the increased diffusion, but where
the limiter produces an antidiffusive flux, the antidiffusive nature is enhanced by the
diffusion. This can lead to small oscillations. This behavior is exemplified by the
FCT limiters where the limiter has an antidiffusive Lax-Friedrichs-type signal speed
(7~

8.3.3 TVD Limiters

Although this is not completely general, for the purposes of this study the limiters
used with TVD schemnes can be divided into two categories: two argument and three
argument types. These limiters can also be used with FCT schemes as | have refor-
mulated them and with HOG algorithms corresponding to a given TVD scheme. The
principal contributions found in the following scctions are gencralizations of the idecas
of Sweby {132} and Roc [176] to more general numerical schemes. The analyses of
Sweby and I%oe used with an upwind-biased TVD Lax-Wendroff scheme applics very
well to other uses of two argument limiters. The analysis of Roe [131] with regards
to three argument limiters is limited to a small set of the limiters which arc a natural
outgrowth of the two argument limiters.

For general second-order TVD schemes, several condition must be met for the
limiters to provide a TVD) solution. These arc taken from the conditions for a TVD
scheme in a semi-discrete case, (sce Chapter 4). For cell-centered based limited
scheines such as the modified flux TVD scheme in (4.22a), the conditions are for
a>0

% —Q, <2, (8.11a)
and fora < 0
Q1 - % <2. (8.1ib)
For ccll-edge based limited schemes such as (6.4) or (6.7) the conditions ate for a > 0
Q,’i
Q}-’ - —"-: S 2 v (8‘2&)



and for a < )

Q-
@y~ - <2 (8.12h)

Wken the fully diserete case is cansidered (using backward Euler time differencing),
the cell-cdge based hmiters conform to the same restrictions as the cell-centered types,
but the semi-discrete form given above does have implications for some limiters dis-
cussed later in the chapter. Later some conditions are given with regard to certain

fully discrete cases.

Remark 25 Darvis [IN9] discusses less restrictive limiters based on Lar- Wendroff
type time cenlering. These limits are atated fora > 0

2
Q<. (8.13a)

and

@2 (8.13b)

r | -aa’
with analogous himits for u < 0.

One caveat applies to the strict use of conditions such as (8.11a)-(8.12b): the
TVD conditions should be derived for each scheme from those stated in Theorem 6.
An example of this principle at viork is the derivation of appropriate limiters defined
i Chapter 6 for parabolic FCT schemes. The resulting conditions for the limiters are
identical to those above, but the right-hand sides of the inequalities are multiplied by
4/3. A simple example of this is the minbar limiter, (3.17), which produces a TVD
scheme, but the proof of this requires a slight modification of the usual proofs (i.e.,
dropning the assumption that the Q functions are positive or equal to zero for all r).

Two Argument Limiters

Roe [176] and Sweby [132] defined their schemes (and limitess) to be upwind biased
in nature. The stencil for the limiters was centered about a cell-edge and the cell-
" edge upwind from that. The typical assumptions regarding the positivity of the Q
functions leads to the TVD region defined by Sweby. The boundary of this region is
given by

Qrvo =m(2,2r) . (8.14)

It is bounded below by the x-axis. The TVD) region using this assumption is shown
in Fig. 8.2a. If the assumnption regarding positivity is dropped then the region is
bounded by

Qbvp =m(l,r) . and Q3yp =m(-1,~-r). (8.15)

This region is shown in Fig. 8.2b. Figure 8.2b differs from previous presentations in
its recognition of himiters that can differ in sign (an example of which is the minbar
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limiter).

As discussed in detai bolow, the hnnters pod o s gec e = Nr Bp ThER
they make the scheme a conver = rige of two (o more) . < cecotd pgder g0 s,
For a upwind-biased cell-ed. - linite, . ' rocans the limited « . e | e
of the Beam-Warming (Qpw ) and Lax-MWenure ' «Qrey 3 demes. b s wr amg-orde -
region of the plane for positive definite 33156 - g1 1 - the regior teendse by
the minmod and superbee limiters (sce vedonv “or v oy cgereral € 0 0 imisiee
given in Fig. *.2, the second-order regon is tar  2per Houl . - shaded regr . o
r > 0 and the entire shaded regicn fr v v

For cell-edge limiters applied to secon 3o4i. . wemr-an w0t tine disere i
tions (forward Euler or forward Eukr we t . wendrot ;- orrection), ae v
gioas given in Fig. 8.2 also apply. For fulv :cheni-» based around the sanw

methodology, the TVD regior meet the . :a.. . zut the i cond order region of the
planc remains the same, thus for practi..  rurpen-s yielding the same sort of ‘im-
ters. This point becomes significart wae - anmuering the ULTIMATE limiter i
Section 8.3.5.

Several of the more common limuers ar~ 1he basic “minmod” limiter {133)

Q:l.r = ni(l.r), (8.16a)
van Leer's limiter [119]
Quilor)= ]r;l':: (8.16b)
the centered limiter {120}
Q1 m=mlrr s r)] . (8.16¢)
and Roe’s superbee limiter
Qsp(l,r) max{ (s min(). = (8.16d)

Another form of limiter is used waunthe () 1 pe scher~ i3 mmmey is called
the “minbar” limiter and it retucs: the usmemert with tir - mallest absolute value.
It can be written symbolically

aah={ " oy == wmm O(Jaf . (8.17)

b otherwise

and in the ENO schemes the difference stencil graa.  1::ae direction of the smaller
argument. Figure 8.3a shows the behavior of tive. ros-- 1 the ratio form in the
context of a second-order TVD scheme. 1 kg - 0 10 i i Lrder TV region
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Figure 8.2: The second order TVD regions ate shown in the shaded regions of these
figures.  The ther lines sacn che limits of the TVD region for an explicit time
differencing. Figure 3.2b gives the ‘TVD regions assuming Q is positive definite. This
agre<s with the preentation given by Sweby. Figure 8.2a shows the TVD region
assumning Q is not positive definite. The second-ordes TV region includes the lines
Q=rlord<r<1and@Q=1"forr 21 Thelincs denoted by Q. and Qpw
cosrespond to the Lax-Wendrolf and Beam-Warming methods. ’he regions lying
between these curves are second-order accurate. The other “thin” lines outline the
TVD regions. In Fig. 8.2a this is the r-axis for » > 0. For Fig. 8.2b this is the line
Q= rfor-rlandQ=1forr>]1.
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is shown as outlined by @, and Qsp. Figure 8.4L shows the behavior of Q. and Q.
with respect to r.

For the initial presentation of this analysis, for example, the determination of the
limiter at cell-edge ; + 1 if the signal velocity a > 0 then the gradient at j — 1 is
compared with the gradient at j + 1, otherwise the gradient at j + 1 is used for
comparison. This scheme is (6.7) with

; rts b 8.1
d,.1 = . .
)0’ Q)" A,’iz ( 8)
The question of accuracy of limited schemes of this nature was addressed by
Sweby in [132]. The schemes of this nature could be viewed as convex averages of the
Lax-Wendroff and Beam-Warming schemes. These schemes are defined by the use
of certain gradicnt ratios defined in a linear manner. The second-order TVD region
is a set of the regions bounded by these two schemes and the conditions defining
TVD schemes. A secondary effect of this is that the limiters thus become convex
but nonlinear averages of the sample gradients. Two third-order upwind methods
can also be incorporated into this framework. One is based on cell averages and the
other is point value based {190] (see Chapter 9). These schemes are defined for the
upwind-biased TVD schemes with gradients written in ratio form as

s 3 r

;::—;=z+z' (8-]9.)
for the point-value form and

S (8.19b)

5,4 3 3’ '

for the cell-average form. Figure 8.3b shows the region defined by these limiters in
the second-order TVD region.

The use of these identical limiters has not been limited to schemes of this type. The
HOG scheme described by Colella in [123) and Osher in [179] and the modified flux
TVD scheme of Hasten (130, 61) successfully use these same limiters. The polynomial
interpolation for this scheme is given by (8.7). The limiters are not biased with the
direction of the flow, and the limiters stencil is invasiant. These schemes deterrniine a
value for the gradient which is cell-centered and is based on sample gradients taken st
the cell edges. Analysis of conditions resulting in TVD limiters yields :dentical seaults
as the upwind-biased limiter applied to a TVD Lax-Wendroff sch..ne as discussed
later. In fact, for a scalar wave equation these two schemes give identical results with
identical limiters. This does not generalize to nonlinear equations.

The accuracy of these schemes is second order in the L; norm, but the limiters
make the resulting scheme a convex average of a second-ordcr upwind scheme and the
corresponding anti-upwind interpolated scheme. The first scheme produces results of
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relatively good quality, while the second scheme produces poor results (saved by the
Riemann solver), but the limiter provides exceptional results imnproved in all respects.
The relation of the lincar difference schemes to the high order method is akin to the
rclation of Sweby and Roe's scheme and Lax-Wendroff or Beam-Warming schemes.

Before going further, several other two argument limiters should be introduced.
The form used to define the minmod and superbee limiters are specific cases of a
family of schemes defined by

Q. = max[0,min(n,r),min(l.nr)} ,1 <n<2. (8.20)

For n = 1 this reduces .o the minmod limiter and for n = 2 it is the superbee limiter.
The above caveat also applies to this limiter because for some possible schemes the
above definition can be extended. Figure 8.5a shows the behavior of Q, for n == 1.5.

Osher and Chakravarthy [180] introduced a limiter
Qoc =m(l,nr) or m(n,r) 1<n<2, (8.21)

which does not share the symmetry condition witk the other limiters (unless n = 1)
and thus must be ased with caution. This can be scen in Fig. 8.5b for n = 2 and
each of th: two forms given above. The first of these two choices makes sense from
the standpoint that in a upwind-biased cell-~dge limiter it would choose the centrally
differenced gradient. The results presented in {181, 132] show the effects of this lack of
symmetry. This limiter may still be used if applied carefully in algorithm construction.
Nevertheless, these limiters find widespread use in a number of schem.es and produce
quality results in spite of their less desirable qualities.

Uniformly nonoscillatory schemes [64) use a limited second derivative to correct
the first derivative cstimate to give uniform second-order accuracy in all esror norms.
The price paid is the loss of the TVD property; however, these schemes are designed
not to create any new extrema not in the initial datas (for linear problems). For the
polynomial form (8.7), the sample gradients used are cell-edge centered. The UNO
scheme makes an estimate of the second derivative at the ccli-edges and cortect *he
value of the cell-edge first derivative to the cell center. | define

d, = . (8.22)

as the second derivative computed from the first derivatives 8,440 and cotrpute an
estimate for d, N with

dyy = in(d,,d,yy) or wmid, d,,}. {5.23)

47



| (a)

2 1 «:ia%a

1.51 55

v‘.:}.
Q 1¢

1 Q

051 1

f
o ———— e —
0.5 1 + + + +
-1 0 1 2 3 4 5
[ ¢

+
-

<>
e S

0.5

Figure 8.4: Figure 8.4a shows the minmod and supesbee limiters. The minmod limiter
gives the lower boundary and the superbee limiter gives the upper boundary of the
second-order TVD region. In Fig. 8.4b, van Leet’s and the centered limiter are given.
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Figure 8.5: Figure 8.5a shows the limiter, Q,, for n = 1.5. The plot shown by
Fig. 8.5b looks similar to Fig. 8.3a, the difference is that the upper boundary of the
second-order TVD region is given by one of the two limiters (Qoc = m(1,2r))for
r < |1 and by the other (Qoc = m(2,r)) for r > 1.
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I correct the first derivative estimates

5,0y =8,y + %’-d,_-, (8.24a)
and A

. X

.9"% =3H;——2—d,’% . (32‘"))

and limit these modified gradients in a normal fashion. The performance of this
scheme on test problems is generally exceptional. This approach works for the mod-
ified flux TVD metnod and its related HOG counterpart. Suresh and Huynh have
studied some interesting variant of the above UNO-type schemes [191).

The upwind-biased cell-edge limiter uses two argument limiters as well, but the
proper definition of UNO requires some modification. Discussion of this is deferred
to the next section.

The compressive limiters are necessary for comprting contact discontinuities be
causc of their tendency to diffuse. Less compressive limiters are recommended for
shocks because of a shock's self-sharpening nature.

Q.: does not have the usual form, dut checking its functionality shows what its
effect is. This can also be vicwed as a modified harmonic mean. This connection is
explored at length in Section 8.3.4.

Three Argument Limiters

As the discussion in the previous section would indicate, the two argument TVD lim-
iters are relatively simple to analyze and take a number of forms. The three argument
limiters are more diificult to analyze, but | follow the same general methodology.

Several limiters of this class have already been given in Chapter 7. To present
these limiters in as compact a form as possible, the nomenclature used in Section 7.2
is used. Thus the following variables are defined:

T LR L (8.25)
A,,4u 4,,4u

and the function Q,,, (’:-}"’Hl":*l) can be rewritten as Q,,’ (r‘.l.r’)a,,}.
The term s,,; has the same definition as before. Some of the limiters of this class

have been reported by Roe [131] and Yee [134]. Some example of these limiters are

Qi (r . 1rt) =m(r,1r%) (8.26a)
Q. (r', I,r’) =m [2r'.2,2r’.% (r' + r’)] . (8.26b)
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anud v (r_‘ l.r’) —m ('_J) + "‘(l‘rf) -1. (8.26¢)

Figure 8.6 shows these limiters. Limiters of the formm of Q) are not recominended
because of their behavior near discontinuities and extrema.  Roe [131] noted this
hehavior by defining this type of function os a “separable Q funiction.” T'his represents
a simple manner of extending two argument limiters to the three argument case.
Examples of this philosophy are extensions of the superhee and van Leer’s limiter

3 =4+ jrtj+r?
T b4 1+

Qu(r.1.r*) -1, (8.26d)

and

Qu (r'. 1. r’) = max {0. min (I.'Zr') Lmin (‘.!, r")]
+ max [0.min (1.2r*)  min (2.7%)] - 1. (8.26¢)

If a function being limited is smooth and monotone over range of the three arguments
being limited, no problem occurs because a monotone variation is assumed here.
Problems occur when the daia shows more structure. This is evident through Fig. 8.7,
which shows that both of the above limiters are not TVD although their behavior in
practice may be acceptable on most initial data.

At this point, several topics are in need of discussion. As before with the two
argument limiters, accuracy of the approximation is important, and as before some
criteria such as symunetry necds to be met. These allow us to create new limiters
with desirable qualitics.

The topic of accuracy can be addressed quite simply, as part of the answer comes
from the previous analysis of upwind-biased limiters for the TVD Lax-Wendroff
schemes.  The three argument limiters (1 am considering those centered about a
cell edgr) are a convex average of the Lax-Wendrofl and Beam-\Warming methods,
but also include an anti- Beam-Warming-ty pe scheme where the stencil is taken to be
opposite of upwind. Although the result of the limiter is a convex average of these
schesnes, it is second-order accurate. ‘Fhe stability of schemes such as FCT or sym-
metric TVI) show the power of limiters to ofiset the effects of using anti-upwind data.
This statement is somewhat misleading as anti-upwind data is dangerous at extrema
and discontinuitics and the limiters discussed here would chouse data from elsewhere
in the steneil at these points.

As noted with Fig. 8.2, the TVD regions for the three argument limiters can be
visualized by projecting the regions shown in the plot in an additional coordinate
ditection.

The concept of symmetry in these limiters needs to be different than with the two
argumnent case. Common sense dictates that the limiter should be symimetric about



Figure 8.6: Three of the three argument limiters are shown here. These are the
minmod limiter (Q,), the centered limiter (Q.), and a modified minmod limites ((Q3).
The modified minmod limiter does not give TVD results because of its form and
subsequent behavior when r2 < 0. The other two limiter are TVD for second-order

symmetric type schemes.



Figure 8.7. Both of these hinnters use the design philosophy of the modified minmed
scheme. Figure 8.7a uses van Leer’s limiter and Fig. 8.7b uses the superbee limiter.
Both are not TVD for r* < 0, but also are not TVD) should r* grow sufficiently large

with both being greater than 1.
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the eentral value in the stencil, i.e..

Q(r .1ty =Q(r*.1r7) . (8.27)

Inspection reveals that this is indeed the case for the limiters given above. The
property of homogeneity is also important and is kept by the above limiters. The
same caveat concerning limiters and specific difference schemes made in the previous
section applies to the three argument limiters.

Before moving on. several limiters can be introduced that et the above stated
criteria. One limiter that quickly comes to mind is an extension of the minbar limiter,
(8.17).

[
a if |a] =inf(la],|b],jc])
m{a,b.c) = & if |8 =inf(ja].18].]c]) - i8.28)

¢ otherwise

Figurc 8.8 shows this limiter behavior for different values of r= and r*. A general
class of limiters extending two arguiment limitess to three arguments can be writtca

Q" = min [Q'z (l.r') .Q? (l."’)l ' (8.29)

where (2 could he any two argument limiters like thuse discussed in the previous
section. Two examples of this design principle are given in Fig. 8.9 (nsing van Leer’s
and the zentered two argument limiters). This limiter does not share some of the poor
charactrtistics of the scparable limiters shown above. In several cases, the results from
this lim.ter reduce to other limiters discussed above. For instance, the basic three
argumnent minmod limiter can be found from the above combination of two argument
minmod limiters.

A sevond group of limiters, which have their basis on the above-stated symemne-
try property, are patural nutgrowthe of several of the two arggument TV D limiters.
Examples of this design are

Q. = max {0. min (2. 2r".2r*.% (l + r') ,;E (l + r’))] , (8.30a)

Qs = max [0. m:n (2,r‘.r’) , min (l.2r'.2r’)] . (8.30b)
and
Qs = rl+irtjr 40t
T 24 et 4t
The limiters satisfv the TVD requirements for the symmetsic TV scheme and per-
form quite well in practice. These are shown in Fig. 8.10, which demonstrates their
ability Lo produce symmetric TVD limiters.

(8.30¢)
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Figure 8.8: The threc argument analog to the minbar limiter is shown here.

S discussed in Chapter 6, the concept of UNO schemes can be generalized to
the three argument limiters. This is done in the following mnanner. The cell-edged
stenc.] for the limiters requires that gradients one full cell distant from cell edge be
used in the limiting process. As with the ‘wo argument implementation of an UNO
scheme, thesc gradients are corrected. To do this, cell-edged estimates for the second
dcrivatives are needed, as defined by (8.23). The gradients used in the limiter are
then corrected with a first-order correction based on these second derivatves. The
cell-edge gradient on the cell edge where the limiter is definied is alscady second-order
and needs no cosréclion. These corrections are

5’_* =3,.} + Atd,_’ (8.31a)

and
.1')" = e - Ald’,* . (8.31%)

As noted in the previous section, the npwind-biased limiters cannot use the UNO
description given in the previous section. The cell-edge-based definition given in the
previous paragraph is the proper basis to begin from and the generalizaticn to the
upwind-biased limiters is natural.

The methods introduced as being symmetsic TVD schemes are differentiated by
their flux limiters which are centered in suppost about the ccll adges. The other
methods like those introduced by Sweby and Roe are upwind biased in the support
for their limiters. Both methods however are closely related to the Lay Wendroff
methcd. The symmetric schemes have been favorably viewed hecause of their lower
operation rount and an increased convergence rate |166).

in considering the performance of these schemes, six test problems are completed:
two for the scalar wave cquation, one for Burgers’ equation, and three for the Euler



Figese ~0. Here » Liirrent methodology is used to create three arguinent limsiters.
The sesulting limiters are TVD and do not saffer from the samie difficr:lties as the
modiived minbag type of limiter. The two base liriiters used here are van Leet’s and
the centered limiters. In practice any TVI) two argument limiter can be used in this

contlext.
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Figure 8.10: The limiters shown here use the symmetsy property discussed in the text.
The limiter shown in Fig. 8.10a is analogous to the centered limiter while Fig. 8.10b
is analogous to the superbee limiter. Both are sccond order and TVD. Figure 8.10c
gives a van Leer type limiter, which is not TV but works quite well i-, practice,



Table 8.1: Order of accuracy in several norms for the schemes solving Burgers' cqua-
tion.

Scheme L, | L, | L.
Symmetric (¢ =0.2) { 1.83 | 1.58 | 1.19
Upwiné (¢ = 0.2) 1.90 | 1.65 | 1.28
Symmetric (¢t =1.0) { 1.48 | 1.19 | 0.78
Upwind (¢ = 1.0) .41} 1.14]0.74

equations. The two problems for the scalar wave equation are the advection of a
square wave ana of a “teepee” function across a periodic domain. Each test runs
for 300 time steps with a Courant-Friedrichs-Lewy (CFL) number of 1. The Burgers'
cquation problem is simply a sin (1) initial condition on a periodic domain with length
of 2z. The three Euler equation problems are Sod’s problem [41], Lax’s problem [55],
and a blast wave problem [44]. The combination of these problems highlights the
strengths and weaknesses of these algorithms. Both algorithms always use the limiter
denoted by Q; in the previous section for all problems except the Burgers' equation
problem where Qy is used.

Figure 8.11 shows the solutions to the scalar wave equation. The symmetric
scheme obviously provides lower resolution in both cases. The difference is also (airly
great in terms of both peak preservation as well as signal width. The symmetric
«cheme also hiae problems with signal shape as it is somewhat distorted. A notable
feature of the upwind-biased scheme is that for the scalar wave equation the solution
is identical to that obtained by the modified lux TVD scheme if the same limiters
are used. This can be explained by the support of the limiter used and the resulting
interpolation on the upwind side of each cell interface. For nonlinecar problems this
does not hold.

In Table 8.1, the rates of convergence are given for Burgers’ equation. When the
solution is smooth, the upwind method * evidently superiu: in every error norm.
After a shock forms, the symmetric scheme is slightly more convergent; however, for
all test cases (up to 100C grid cells) the actual error ic lower for the upwind scheme.
In addition, as time progresses after t = 1.0, the upwind scheme recovers its initially
higher rate of convergence.

The solutions for the Euler equations echo the results with the previous three
problems. Across the board, the resolution afforded by the upwind sc’ictne is superior.
The major flow structures: shocks, rarefactions, and contact discontinuitics are all
noticeably better resolved with the upwind method. The results from Sod’s problem
demaonstrate this to soane degeee. In Fig, 813, cach of the features are sharper with
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Figure 8.11: The solution of the scalar wave equation by both these methods is
shown for two test problems. In both cases, the upwind method provides superior
performance.
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the upwind method. This is probably most noticeable at the contact discontinuity.
In Fig. 8.12. the noted behaviour for the contact discontinuity and shock are clearly
shown.  Also evident from this figure is the symmetry problems exhibited by the
svinmetric scheme. The skape of the density peak is more consistent with the exaet
solution with the upwind-biased method.

The blast wave problemn (see Fig. 8.14) accentuates cach of these issues. This is
particulasly true with respect to the right density peak whici is significantly closer
to the converged sclution with the upwind method. Two other key features of the
solution are the degree of =6ill-in” between the peaks and the contact discontinuity to
the left of the left density peak. The fill-in regions are both smeared nearly equally,
but the shape of the upwind computed solution is better. The left-most contact
discontinuity is much more smeared by the symmetric scheme.

The results of the previous paragraphs show conclusively that the upwind scheme
vroduces results of higher resolution when compared with the syminetric scheme.
This raises the issue of cause. These schemes are second-order accurate wher: the
solution 1s smooth. The limiters are based on minimum principles, and increasing
their support lewers “he value teturned by the function. The subsequent “flattening”
of the slope is akin to increasing the numetical viscosity of the scheme thus lowering
the accuracy.

Interpreted on a more physical basis, the upwind scheme takes data from a more
physically meaningful location on the grid. The support for the limite: can be per-
ceived to affect the solution at that point, whereas the symmetric limiters are centered
by taking both upwind and antiupwind data. Both arguments lcad tc¢ a zonclusion
that if resolution is of pritnary concern, the limiter should have as small a support as
pussible in order to limit its induced viscosity. This of course shou'd be within the
limitations of providing physically meaningful oscillation-free (or nearly so) results.

Appendix E provides the results of using both two and three a'gament himiters
without limiting for each term.

Artificial Compression

Often. it is important to choose the limiter used by the nature of the problem. For
ficlds that are lincarly degenerate, the problem of numerical diffusion is severe. In
the solution of systems of equations this manifests itselfl as severe smearing of contact
discontinuitices. A numnber of schemes have been developed to deal with this prob-
lem [183, 122, 110, 137, 192, 193]. One such scheme is astificial compression, which
can be applied to TVD limiters. The form is

0) ={l+v,0,)Q,. (%.324)
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Figure 8.12: The solution to Lax’s problem highlights the resolution of both shocks
and contact discontinuities as well as the symmetry properties of the solutios: meth.-
ods.
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Figure 8.13: The solution to Sod’s problem by both methods shows the improved
resolution given by the upwind-biased scheme.
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Figure 8.14: In the blast wave problem, the deficiencies of both methods are most
clearly shown. The difficulty of the problem is due to the large amount of structure
confined to a small physical space.
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where the discontinuity detector, 8, is defined as

Iy e
"= |AJJ+%"| + I;;I_%ul R (8320)

and the argument, w;, is chosen to give the best results. Figure 8.3.3a shows how 0
varies with r This applies compression to the method (makes the local slope steeper).
If the field is genuinely nonlinear, then the limiter should not be so compressive in
nature.

An effective forr for w; in transient problems was introduced in [101]. This
was used with the superbee limiter under the stipulation that the resulting scheme
remained TVD after the application of artificial compression. This application was
not second order in the sense of the definition given in the previous sections. With
the superbee limiter the form is

w; = min(|y;], 1 = |y]) , (8.33)

where v; is the local CFL number. A more general form cau be found that produces
TVD results (for common TVD schemes like those presented in Section 8.3.3). This
form is

wj =2 =§+min(ly,],1 - |y,]), (8.34)

where £ = max[Q(r)] r € R.

For the case of three argument limiters, artificial compression is generally not
applied. The same general form used above can be used after several modifications.
The discontinuity detector is applied to two sets of gradients when choosing the
maximum value is

0,+l,- = max (0;,0;41) , (8.35)

and w is computed at the cell-edges. The behavior of 6 for the cell-edged three
argument case is shown in Fig. 8.3.3b. The effectiveness of this approach is discussed
in Section 8.4.

A large degree of caution should be exercised when using artificial compression
or similar schemes. The type of limiter used and the compression involved appears
to affect solutions solved for long time periods on periodic domains [159). The more
compressive algorithms can give completely erroneous results while less compressive
ones converge to the correct solution. In steady-state solutions the less compressive
limiters normally give more convergent solutions. This is the likely outcome of in-
creased dissipation present in the algorithms. In this example, the FCT method of
Boris and Book produced exceedingly poor results that can probably be attributed
to the amount of compression in the algorithm.
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sion algorithm is shown for use with both two and three argument limiters.
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8.3.4 Nearly TVD Limiters

The previous sections concentrated on limiters that meet TVD criteria for the com-
monly used TVD schemes. By its nature, maintaining a TVD solution requires that
the solution reduce to first-order accuracy at extrema. For long transients o: those
involving a great number of time steps, the impact of this is profound. In virtually
every commonly reported solution, peaks are clipped and the solution is diffused.
It is not reasonable to expect this to change as these are intrinsic to numerical ap-
proximation, but the degree to which these errors occur should be improved. Where
the solution is not diffused and the front remain sharp, often smooth transitions are
unphysically sharpened by the action of the limiter. Thus the currently used limiter:.
are not always equal to the task.

To attempt improvement on some of the above-mentioned problems it may be
useful to relax the requircment that a scheme produce a TVD solution. One way of
doing this is to use a < ¥erent definition for variation control of the scher. This
approach has been take: by Shu [169] in the total variation bounded (TVB) schemes.
I have also looked it a more general view of limiters as a nonlinear average of the
sample gradients as a manner of approach to this problem. Other approaches employ
ENO type discretizations and for least squares methods [165].

TVB Limiters

Shu has developed TVB schemes as a uniformly high-order alternative to TVD
schemes. The TV'B property simply requires that

TV (ua) < B (8.36)

for some time ¢t > 0. This requires that basic TVD limiter be modified to take
advantage of this definition (TVD implies that a scheme is TVB). This modification
requires that sume estimate of the second derivative of the solution be made in an a
priori manncr. Higher order derivatives have to be estimated if higher than second-
order schemes are needed. This quantity is defined by the symbol Af. This estimate
then modiiies the gradients in the limiter that are not centered about the point being
limited. The effect of this is to bias the limiter into choosing the higher-urder centered
gradient. This allows oscillations to form in the solution, but when they grow too
large the nonlinear action of the limiter stops the growih. Although this has not been
proved, it is believed that ENQO schemes are TVB [65, 66].

'he details ol implementation can he divided into several distinct groups based
on e type of limiter being used. For two argument limiters ecntered on the grid
po* the limiter must be divided into two pieces, each centered on the cell edge.
Thus the P o

Su Qe yu (8.37a)

166



becomes

&JTVB = -;— [Q(l,r + m)A,_%u +Q(l,r+ m)AH%u] , (8.37b)

where m = MAx/s)_% or m = Mu:/s,-ﬂ for the appropriate term in (8.37b).
Examples of this limiter are shown in Fig. 8.16 for two values of MAz. Here the
definition of the limiter function Q has not changed from that given in Section 8.3.3,
but its arguments have. The argument away from the cell edge where the limiter is
centered has M Azx added to it, thus the limiter is in most cases biased towards the
selection of the argument it is centered on. A proof of the TVB nature of this limiter
is given in [169)].

Several approaches can be taken to implementing this methodology with cell-
edged limiters. The method described above for cell-centered limiters can be used
with slight modification. The upwind-biased cell-edge limiter is defined by

.;1':'*8 =Q(l, r+m)s“_* . (8.38)

where m is defined as above and r is the ratio of the upwind gradient from cell-edge
]+ % and s, e For the centered cell-edge limiters, the approach follows the logical
extension of the upwind-biased casc. In this case a limiter is defined by

S =Q( +m 0t 4 m)syy, . (8.39)

Figure 8.17 shows this limiter for two values of MAz. On the plateau of the figures,
the schemes are second-c rder accurate and, as shown, the sizes of the plateaus increase

with MAxz.

Theorem 10 The limiters given by (8.98) and (8.39) result in @ TVB scheme if these
limiters and the resulting numerical schemes are TVD with m = 0. The resulting
schemes (those considered here) are uniformly second-order accurate.

Proof. The proof is similar to the proof given in [169]. If the underlying numerical
schemsz is TVD, then the proof reduces to showing that the total variation is bounded
by some constant at all time, ¢ > 0. This is accomplished through the use of a modified
flux

e =P + 4, (8.40)

which is the sum of a TVD flux and a constant. If it can be shown this constant
is bounded, then its sum is bounded, in turn leading to an upper bound on the
total variation. The accuracy argument involves showing that the constant M in the
limiter creates a bias that results in the selection of the high-order accuracy gradient
centered at the limiters location. 0
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Figure 8.16: Two cases of the two argurnent TVB limiter are given here. The line
that grows upward along the line Q = } (1 + r) past r = 3 uses MAz = 5 while the
other line uses mAr = 2. Both are always in the second-order region of the plane.

S-Limiters

One characteristic shared by the TVD limiters with the exception of the minbar
limiters is setting the limited gradient to zero when the sign changes among the
limiters arguments. The minbar limiter simply returns the argument that has the
smaller absolute value, which may be opposite in sign to the function at that given
point. This leads to a loss of accuracy at these points. As Tadmor [194] showed,
the requirement for a scheme to be TVD (by Harten's definition) extrema must be
clipped.

The limiters given in this section were designed to correct this problem. The
essential feature of these schemes can be encapsulated in the following definition:

Definition 6 (S-limiters) An S-limiter returns a value equal to some nonlinear
average of its inpul arguments and has the same sign as the argument dcfined atl the
same lv-ation as the limiter.

For example, in most cases this is some sort of gradient. The limited gradient has the
same sign as the gradient at the location where the limiter is defined. For cell-edge-
based algorithms, the changes in the reconstructive polynomial are minimal, but for
cell-centered reconstructions some redefinition is required.

Sta-ting from the scheme given by (8.7) and redefining it to meet the above-stated
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Figure 8.17: The three argument TVB limiter is shown here for MAz = 2 and
MAz = 5. The larger value of MAr gives a larger “plateau” on the plot.
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Here the gradient, A u, is redefined as

.'STu:S(l,r)_\)_%u or $(r,1)4,,1u, (8.41b)

where the simplest example of the function S is
Sy (1,r) = min(l,|r|) ; (8.41¢)

another example would be the centered limiter
Se(1,r) = min [2,2|r| . % (1+ IrI)] . (8.41d)

These limiters are shown in Fig. 8.18. The term S, is a TVD limiter over its entire
range, but S, is not. The limiters can be logically extended to three arguments as be-
fore. One noteworthy point to raise with this reconstruction is that cell average of the
reconstruction no longer equals the cell average u; if sign (A#%u) # sign (Aj_%u).
This subject is the topic of the next chapter.

In general, these limiiers can be defined as above. They act as a multiplier on the
cell-cdge gradients modifying its magnitude but not its sign. This differs from the
normal definition of limiters at points of extrema as noted above. The limiters are
casily constructed from the definition of TVD limiters by removing the feature that
sets the gradient to zero if the signs differ, and changing the reconstruction algorithm
to one like the one shown above.

These limiters are not TVD unless the magnitude of S(1,r) < 1. Despite this,
limiters of this nature perform well in practice (see Section 8.4) and have some advan-
tages over the limiters constriined to be TVD. In test problems, the total variation
was monitored and these limiters provide a TVD solution in practice. This may not
. »ld true for all initial data.

Generalized Average Limiters

As noted in several sections above (8.3.3 and 8.3.3), limiters can be viewed as nonlinear
averages of their arguments. In this section, this subject is explored further. As noted
in Section 8.3.3, van Leer's limiter is a modified harmonic mean of its arguments.
Another limiter was introduced in {139, 158], which has an interesting interpretation.
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Figure 8.18: Two S-limiters are shown here. The upper of the two lines is for the
centered limiter S, while the lower is for S;. S, is a TVD limiter.

This limiter is written

(b +8%)a+ (a2 + )b
Qunlab) = — v

(8.42)

where § is a small positive bias. This bias is added to guard against clipping smooth
extrema in the solution. Its role is similar to that of M in the TVB schemes. It
should be chosen to be |du/dz| [195] or |du/dz|*/? [159] from the smooth regions of
the flow. Dropping & and converting this to the normal form for analysis gives

P4

Qan(l,r) = 177" (8.43)
This limiter car: be written in an interesting form
2aqb |1
Qan (a,d) = b (a + b)] . (8.44)

In this form it has a nonlinear coefficient modifying the average of the input argu-
ments. In [196), another form of this family of limiter was given (dropping the bias,
) as

22’6+ 2ab* _ dab [1 (a+ b)]
(lal + (8D (lal + 18))? L2 '

Qm-v (a, b) = (845)
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This hmiter is more compressive than Q,, and looks a great deal like the harmonic

mean limiter. As Jafb] T o, Q- T 2. This limiter can also be written in ratio form

as
2r + 2r2

(1+1r)"
This iimiter behaves exactly as Q¢ for r > 0, but for r < 0 it behaves differently

Qm-u(l,r)= (8.46)

(because it does not equal zero).
'I'he noteworthy point is that both this limiter and van Leer's limiter can be
written in a form that encompasses both of them as well as a much larger class of

hmiter. This form is

"b+|b]"a
Q (a. b' ") = |u!|_“".:'|l—b:_n_' ) (8-47)
or in a form suitable for analysis,
r+|r|"
Q(l.r,n) = l_;%:? . (8.48)

Limiters obtained for two values of n are given in Fig. 5.19a.

If one takes the limit as n T oo, the minbar limiter is recovered, making it a
limiting form of this family. For n # 1 or 1 # ¢o this limiter does not produce a TVD
scheme in the nunerical exprriments, but the results are quite good. The comments
contained in [159] are aiso of some importance when considering this limiter.

For more than two arguments, one can look to the suitable extensions of the
definitions of harmonic mean and generalize to the power limiter above. For the
three argument case this is .

|ab]” c + |ac|” b + [be|” @
|lab]” + lac|” + |bef”

Q(a,b,c,n) = (8.49)
This limiter is shown for n = 2 (in ratio form) in Fig. 8.19b.

It is also interesting to investigate the results obtained with other nonlinear av-
crages such as the geometric mean. The results obtained with this scheme are not
TVD. but have some redeeming qualities.

8.3.5 The ULTIMATE Limiter

This limiter has received a great amount of attention in the literature recently.
Leonard and coworkers 81, 82, 83] have presented this limiter in a series of papers.
In another recent paper, this limiter was compared with other methods on shock
tube problems [197]. The res:its showed that Leonard's limiter probably suffers from
overcompression resulting in entropy violating solutions. In the following paragraphs,
I discover where this characteristic arises in this method.

For this discussion, I do not use the system of nomenclature adopted by Leonard,
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Figure 8.19: The generalized average limiter is shown in these figures. Figure 8.19a
gives two examples of the two argument limiter for n = 2 and n = 3. Neither of these
limiters is TVD. Figure 8.19b shows the n = 2 limiter for the three argument case.

173



but rather move his notation into the system adhered to carlier in this chapter. This
should allow this limiter to be compared on a “level playing ficld.” First, a short hack-
ground is necessary. This method was developed in response to non-monotonic be-
havior of Leonard's QUICK! method in the presence of discontinuities. This method
has been used extensively in engineering heat transfer type applications and repre-
sents the typical high-order scheme employed in those simulations. In this regard,
Leonard’s limiter is a great improvement, but its merits and shortcomings need more
attention.

The normalized value diagram used by Leonard is not reviewed (one can refer to
the above references), and simply tnove on to the presentation of the ULTIMATE
limiter in my terms. Quite easily it can be shown that his limiter has the following
forn:

Q(r)=m(Au*,Cr,2,), (8.50)

where Au?® = v’ - ul is akin to the antidiffusive flux in the FCT method and C

is some constart > 1. In his papers, Leonard uses € = 200. The value of u’!
is determined by a linear high-order upwind method (like QUICK). This limiter is
displayed in the usual fashion in Fig 8.20a. By including the QUICK differencing
(the third-order point value scheme form Section 8.3.3) it can be seen that the region
near the origin is not TVD for explicit time differencing.

Simple observation shows that the above limiter is not TVD for explicit temporal
calculations unless ¢ = 2 and u® can be guaranteed to be within the bounds of a TVD
limiter. When used with fully implicit time differencing or steady-state computations,
the limiter is TVD. For C > 2, the limiter is no longer a convex average of second-
order schemes and  extremely compressive. This behavior is similar to that found
sith the FCT luuiter.  The saving grace is that the high-order upwind methods
like QUICK are well-behaved approximations for hyperbolic conservation laws. It is
hi.ly likely that if other high-order centered approximations were used the limiters
behavior would be far w-.rse (much more compressive). In other words, the positive
feati.res of the underlying lincar advection scheme mask some of the problems with
the limiter.

A recent paper by Leonard (84] discusses the ULTIMATE limiter in transient
problems. He suggests that C' = 2/v. This yields a scheme which is nearly identical
to the classic FCT without the diffusive first step. His results show that using a Lax-
Wendroff or Beam-Warming type flux for the high-order flux with ULTIMATE yiclds
poorer results than the better TVD limiters. Only when the third-order high-order
flux is used are they better (not by much). Considering that the TVD schemes are
essentially designed with Lax-Wendroff or Beam-Warming fluxes as the high-order
fluxes thos: results are more applicable for limiter comparison.

Y"I'he QUICK method is a quadratic polynomial-based upwind method of third order accuracy.

1714



25 $ ~—+ —4 4 4
(b)
2 -
151
{
Q l FS
0.5 S Fs
0
0.5 $ — — -
-1 0 1 2 3 4 5
r

Figure 8.20: The ULTIMATE limiter is shown in this figure without the benefit of the
high-order upwind flux. The basic limiter is not TVD for explicit time discretizations
unless C = 2. The QUICK differencing is included in 8.20b. The region near the
origin gives non-TVD results for explicit schemes.
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8.4 Results

This section presents results for some of the limiters described .~ Lervious sec-
tions. The results are limited to the scalar wave equation and burgers’ equation.
No attempt is made to present results for all the limiters given above, but the types
of limiters introduced here are discussed with regard to their performance in rela-
tion to resolution and convergence. The solution of the Euler equations using these
limiters could also yield useful information about the limiter. This is left for later
investigations. With the exception of the FCT limiters, the basic numerical schemes
used in the results is (8.7) for the two argument limiters and (6.7) for the three ar-
gument limiters. Table 8.2 shows a list of the limiters considered in the results and
the abbreviations used in referring to them below.
T'he general characteristics of the test problems are given in Appendix A.

8.4.1 The Scalar Wave Equation

In this section using various limiters, the scalar wave equation is solved by the methods
described in this chapter. T'wo initial conditions are used for the analysis: a square
wave with a width of 10 cells and a sin? r wave (half of a period) of  width of 25
cells. Boti: tests are conducted for 500 time steps with a CFL number of one-half.
The advective velocity is taken to be unity.

The results for the TVD two and three argument himiters are given in Figs. 8.21-
8.23. The results for niost limiters are what can be expected. The threc argument
limiters make the resulting numerical scheme more diffusive, thus lowering the reso-
lution of the solutions. One important point is the horrible performance of the SB3P
limiter, which is not TVD. The SB2 limiter is also interesting because it seems to
compress the sin? r wave into a square wave. This behavior is commonly seen with
this limiter and warrants some warnine. It is primarily caused by the limiter not be-
ing able to differentiate between a diffused square wave and the smooth sin? = wave.
The limiter “recognizes” it as diffusion and compresses it. Various results regarding
the resolution, accuracy, and numerical diffusion can be seen in Tables 8.3~ 8.5. For
the limiters of these categories, these tables show no surprises except in the case of
the SE2 limiter. By the measure of numerical diffusion used here this limiter actually
provides negative diffusion. This is not unstable because it is applied in a nonlinear
fashion. Where positive diffusion is needed, the limiter supplies it. For the sin’z
problem, the CENT2 and VL2 limiters are more accurate than SB2.

‘The results for artificial compression show that its effects are similar to that pro-
duced by the superbee limiters in both the two and three argument cases. Figure 8.24
shows that the artificial compression results in sharper profiles and increased resolu-
tion when compared with the normal minmod limiter. For the form of implementation
used here, the resulting solution is not as compressed as with the superbee limiter.

‘The TVB solutions are shown in Figs. 8.25 and 8.27. The two argument TVH lim.
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Table 8.2: Abbreviations for the methods used in this study.

Limiter Equation | Abbreviation
Two Argument Minmod (8.16a) MM2
Two Argument van Leer (8.16b) VL2
Two Argument Centered (8.16¢) CENT2
Two Argument Superbee (8.164) SB2
Three Argument Minmod (8.26a) MM3
Three Argument Minmod Prime (8.26¢) MM3P
Three Argument Superbee (8.30b) SB3
Three Argument Superbee Prime (8.26¢) SB3P
Three Argument van Leer (8.30¢) VL3
Three Argument Centered (8.26h) CENT3
Two Parameter Artificial Compression Minmod (8.32b) MM2A
Three Parameter Artificial Compression Minmod (8.35) MM3A
Two Argument Minmod TVB (8.37b) MM2TVB
Three Argument Minmod TVB (8.51b) MM3TVB
Signed Two Argument Minmod (8.41¢) SMM2
Signed Two Argument Centered (8.41d) SCENT?2
Signed Three Argumient Minmod (8.41¢c) SMM3
Signed Three Argument Centered (8.41d) SCENT3
Two Argument van Albada (8.43) VA2
Three Argument van Albada (8.49) VA3
Two Argument van Albada with Bias (8.43) VA2B
Three Argument van Albada with Bias (8.49) VA3B
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Figure 8.2): The scalar squar~ and sin? 7 wave solutions using :-veral two argument
‘FVD limiters. Note that the SB2 limiter compresses the sin 2 profile into a square

wave.
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Figure 8.22: The scalar square and sin? z wave solutions using several three argument
TVD limiters.
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Figure 8.23: The scalar square and sin? z wave solutions using several three argument
“prime” limiters. Note the decidedly non-TVD behavior of the SB3P limiter.
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Figure 8.24: The scalar square and sin’ z wave solutions using artificial compressior
It is notable that the solution with the two argument limiters (MM2A) compresses
the sin® z profile in a similaz manner to the SB2 limiter.
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iter performs quite well, improving the resolution of the basic two argument limiter-
based solution at the cost of not being TVD. The threce argument TVB limiter does
not fair as weii. This can be attributed to the “jocai” nature of the resuiting scheme,
which looks too much like the Lax Wendrofl scheme. In Fig. 8.25, the MM3TVB is
virtually identical to the corresponding Lax-Wendroff olution. To combat this prob-
lem, two other forms of the three argument limiter are introduced, the MM3TVB’

1
Qrve (r",l,r"’) = max |0. min (r‘ +m 0+t + m.3 (r‘ + r*))] , (8.5]a)

and MM3TVB”

QTVE (r',l,r"') = max [0, min ( +m,l+m.:7 +m, % (l + r+) (r + I))]
(8.51b)
As Fig. 8.27 shows, the resuilts arc¢ improved. The tabular data also revea) this.

Figure 8.28 shows the results obtained with S-limiters. For the two argument
case, the results are not significantly different than those obtained with standard
TVD two argument limiters. The S-limiters have a slight advantage in terms of the
quality of results with slightly lower numerical diffusion. As revealed by Jooking at
the numerical data, the threc argument case is -mproved greatly by the use of the
S-limiters when compared with the corresponding TVD limiter case. This is most
likely due to some reduction in the clipping of smooth extrema in the solution.

Van Albada’s limiter is used to represent the solution by a generalized average
limiter (n = 2). 1 have already seen the van Leer or n = 1 limiter at work. The
results in Fig. 8.29 do not use bias in the schemes. The results are quite comparable
with other two or three argument TVD) type schemes. In fact, the solutions are
quite similar to those obtained with the V1.2 or VL3 limiters. By adding bias to the
limiter, the resolution can be improved in a qualitative sense. In a quantitative sense,
the results are worse. One interesting remark is that vhe three argument limiters in
general seem to be more sensitive (as seen in this case or the TVB limiters)

8.4.2 Burgers’ Equation

This section of the chapter centers on the order of accuracy obtained with methods
in conjunction with limiters and their subsequent solutions. To accomplish this, a
standard test problem using Burgers’ equation i~ used. The problem consists of an
initial condition of sin(z), r € [0,2x]. At t = 0.2, the solution is smooth, and at

dhnen dlevnan dhat tha cmemavny

=1 G, a shock has formed in the solution. It is at these times that the aCTuUraly
of the solution is assessed. The problem is solved with 10 grid cells followed by 1000
grid cells. The solution is obtained with a Godunov numerical fluxes as described
in [158].

The results for this test problem are given in Tables 8.6 and 8.7. In general. the
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Figure 8.25: The scalar square and sin? r wave solutions using TVB limiters. The
three argument TVB limiter produces a results nearly identical to the Lax-Wendroff
method.
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Figure 8.26: The modified thyee &rgument Tvp limiter ;g shown here for A7
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Figure 8.27: The scalar square and sin®z wave solutions using modified three ar-
gument TVB limiters. These improve the performance of the three argument TVB
limiters.
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Figure 8.28: The scalar square and sin? z wave solutions using two and three argument
S-litniters.
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Figure 8.29: The scalar square and sin? z wave solutions using the generalized average
limiters with n = 2,
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Figure 8.30: The scalar square and sin® z wave solutions using the generalized average
limiters with n = 2 with a bias added as suggested in [198].
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Table 8.3: L, error norms with minimum and maximum values for the square wave
problem.

Limiter | Minimum | Maximum | L; error
MM2 0.0000 0.7108 7.41 x 1072
VL2 0.0000 0.8784 4.59 x 102
CENT2 0.0000 0.9508 3.65 x 102
SB2 0.0000 0.9927 1.79 x 10~
MM3 0.0000 0.6037 9.41 x 10-?
MM3P 0.0000 0.6005 9.47 x 1072
SB3 0.0000 0.7819 6.36 x 10~2
SB3P -0.1690 1.1875 9.71 x 10-2
VL3 0.0000 0.6760 8.20 x 102
CENT3 0.0000 0.7632 6.60 x 10~2
MM2A 0.0000 0.9668 3.14 x 1072
MM3A 0.0000 0.7174 7.55 x 10~2
MM2TVB | -0.0514 1.0901 4.00 x 10~?
MM3TVB | -0.0392 0.7616 7.77 x 10-3
SMM2 0.0000 0.7108 7.41 x 1072
SCENT?2 0.0000 0.9516 3.65 x 10-?
SMM3 0.0000 0.6059 9.39 x 10-2
SCENT3 0.000¢ 0.7758 6.52 x 102
VA2 0.0000 0.8035 5.63 x 10-2
VA3 0.0000 0.6801 7.95 x 10~3
VA2B -0.0314 1.0313 4.04 x 1072
VA3B -0.1885 0.9275 7.78 x 10~
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Table 8.4: L, error norms with minimum and maximum values for the sin’ z wave
problem.

Limiter | Minimum | Maximum | L; error
MM2 0.0000 0.9197 3.74 x 102
VL2 0.0000 0.9668 2.26 x 10~
CENT?2 0.0000 0.979%4 1.94 x 102
SB2 0.0000 0.9893 2.43 x 10-2
MM3 0.0000 0.8717 5.20 x 10~3
MM3p 0.0000 0.8708 5.24 x 10~2
SB3 0.0029 0.9552 2.98 x 10-2
SB3P -0.1801 1.1847 5.63 x 10~3
VL3 0.0000 0.9162 | 4.06 x 102
CENT3 0.0000 0.9571 3.00 x 10-?
MM2A 0.0000 0.9835 2.10 x 10-2
MM3A 0.0000 0.9385 3.53 x 10-?
MM2TVB -0.0321 0.9943 2.08 x 10~?
MM3TVB | -0.0266 0.9538 | 3.95x 10~
SMM2 0.0000 0.9195 3.74 x 1073
SCENT2 0.0000 0.9791 1.95 x 10-3
SMM3 0.0000 0.8726 5.20 x 10~
SCENT3 0.0000 0.9606 | 3.00 x 10~?
VA2 0.0000 0.9524 2.59 x 102
VA3 0.0000 0.9217 3.56 x 10~2
VA2B -0.0319 0.9944 2.02 x 10~
VA3B -0.1086 1.0564 4.37 x 102




Table 8.5: Numerical viscosity and total variation for both scalar wave equation
problems.

Limiter | ¥ r square | TV square | 7 sin®x | TV sin®x
MM2 40.67 1.42 30.61 1.84
VL2 17.65 1.76 7.91 1.93
CENT2 10.74 1.90 3.58 1.96
SB2 3.00 1.99 -8.49 1.98
MM3 60.59 1.21 53.15 1.74
MM3P 61.19 1.20 53.62 1.74
SBH3 30.57 1.56 17.52 1.91
SB3pP 26.63 4.052 -23.78 3.11
Vis | 47.00 1.35 35.02 1.83
CENT3 31.97 1.53 17.91 1.91
MM2A 8.19 1.94 -1.38 1.97
MM3A 40.73 1.43 29.39 1.88
MM2TVB 7.90 241 3.36 2.12
MM3TVB 39.71 1.61 29.39 1.96
SMM2 40.47 1.42 30.55 1.84
SCENT?2 10.63 1.90 3.53 ).96
SMM3 60.09 .21 52.94 1.75
SCENT3 30.83 1.55 17.53 1.92
VA2 25.70 1.61 12.72 1.90
VA3 44.75 1.36 39.82 1.84
VA2B 9.11 2.20 3.37 2.13
VA3B 12.11 2.37 4.38 2.42
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Table 8.6: Ocde: of convergenre in several error norms for Burgers' equatin at !t = 0.2
when the solutic.i. is smooth,

Limiter | Ly | L2 | Lo
(MM2 | 212|215 | 1.84
VL2 215 2.17 | 1.84
CiENT?2 ‘2.|6 217 1.95
SB2 215|217 | 1.84
M3 2.08 | 1.86 | 1.32
MM3P | 208|187 | 1.32
' $B3 215 | 1.85 | 1.31
| SB3P 191 { 1.63]1.08
VL3 2.:11.85|1.31

CENTS 1213 1.86 | 1.32
MM2A 2141216 | 1.63
MM3A 2.12 | 1.84 | 1.3
MM2TVB | 1.73 1 1.73 | 1.63
MM3TVB | 204 | 1.82 | 1.28
SMM2 212 {214 ]1.85
SCENT2 [2.16:2.16]1.83
SMM3 2.08 | 1.84 | 1.27
SCENT3 [2.08|1.81]1.26
VA2 2.16 | 2.18 | 1.87
VA3 2.13(1.86 | 1.31
VA2B 1.73 | 1.74 | 1.64
VA3B 2.02{1.80}1.25
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Table 8.7. urder of conversrcc . several error norins tor Burgers' equation at ¢ = 0.2
when the solution has u st .

Limiter L1 | L2 l L.
i T

| vim2 1.47 | 1.12 ) 0.70
| viz 151 1.10 | 0.61
CENT2 |1.521.10]0.61
512 1.51 | 1.01 | 0.49
MM3 1.57 | 1.18 | 0.74
MM3P 1.57 | 1.18 | 0.74
SB3 1.6811.14]0.60
SB3P 1.28 | 0.79 { 0.25
VL3 1.65 | 1.19 | 0.69

CENT3 1.53 | 1.00 | 0.47
MM2A 1.49 § 1.08 | 0.58
MM3A 1.60 ] 1.10 | 0.54
MM2TVB | 1.19 | 0.83 | 0.36
MM3TVB | 1.5211.05| 0.5}
SMM?2 1.51 | 1.14 } 0.70
SCENT2 |1.60]1.16 | 0.63
SMM3 1.51 | 1.15 ] 0.72
SCENT3 {1.52{0.98 10.44
VA2 1.54 1 1.12 ] 0.65
VA3 1.651.13 | 0.60
VA2B 1.1510.77 | 0.31
VA3B 1.51 | 1.01 | 0.48
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order of convergence for the solutions is better for the two argument limiter than the
three argument linuters. The three arguinent limiters also experience a much greater
difference in convergence from one norm to a higher norm. The non-TVD and FCT
limiters seem to suffer from worse convergence characteristics than the other schemes.
Additionally, the schemes using some constant (TVB or VA2B and VA3B) in the
limiter show poor convergence. These schemes do pecform far hetter when the inesh
is coarse, and these limiters seem to produce excellent results in relation to other
hmiters for those cases. After a shock has formed, the two argument limiters show a
greater degradation in convergence. Again, this is especially true with the non-TVD
limiters. The stated convergence of the three argument limiters when a shock has
formed is somewhat a function of the exceedingly poor results found on the coarsest
grid. In the same vein, the poor ronvergence of the TVEB and the biased van Albada
himiters is somewhat a result of the excellent results obtained on the cuarsest grid.

8.5 Concluding Remarks

In this chapter a number of linuters have been reviewed and their properties exam-
med. In addition. several himters have been intraduced ot reformulated and analyzed
within a common framework The impact of limiters on high-resolution numerical
solutions has also been demonstrated. The importance of limiters on the solution
of the equatiors is undeniable. The quality of solutions is directly traceable to the
limiters because they are the heart of the numerical schemes.

More study of limiters is warranted in light of these results. As discussed carlier,
limiters can impact steady-state solution convergence. Some study of this phenomena
is needed. Additionally, both TVB and generalized average limiters should studied in
order to give more systematic manner to choose the constants used with the limiters.

The following chapter explores the effect of the constraints placed on the polyno-
mial intezpolation employed by high-order Godunov schemes.
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Chapter 9.
Cell-Averages or Point-Values? On
Reconstruction Methods

V/e have found a strange footprint on the shores of the unknown. We have
devised profound theories, one after another, to account for its origin. At last
we have succeeded in reconstructing the creature that made the footprint. And
lo! it is our own. Sir Arthur Stancly Eddington

9.1 Introduction

One o, the primary manners of constructing modern high-resolution upwind schemes
is the use of the HOG philosaphy. This method has several key points in its favor:
the use of conservation form, the case of use with systems of cquations, the use of a
quality underlying physical model, and reduction of finite differences to polynomial
iterpolation. It is this final point on which I concentrate my efforts.

The polynomial reconstruction determines the order of accuracy the scheme can
attain. It also interacts strongly with tlie underlying physical medel mentioned in
the previous paragraph. This underlying model is typically a Riemann solver of some
variety [30]. In HOG methods, the polynomials used are constructed piecewise so
that each control volume has one polynomial per variable in it. At the boundaries of
the control volume, the polynomial distributions zre not required to be continuous
and a discontinuity typically results. The Riemann solver acts as a sort of “referee”
determining what the correct numerical flux should be at that cell boundary. 1 return
to the general description of HOG methods in the following section.

These methods grew out of the work of Godunov (56, 57 whase ingenious method
cmbodied the essence of upwind differencing as giver. by Couram  [ssacson, and
Reen {54, 31). The work of Godunov was important in two regariz- because of
his use of a Riemann solver within the differenre scheme and Lus theoren regarding
difference schemes.

In the 1970s, » number of rescarchers snade grear strides ia us ng novlin~ar srhemes
in attaining monotone schemes of higher order accuracy. .sotabic a1 ng these wurks
is that of Boris and Book [59] on the flux-corrected transpom acthod an.d HMarten's
artificial compression method [183]. The work of van Leer wa: connerted more clusely
to that of Godunov and in a series of papers, HOG methods wese d«fined {114 120, 60).
The key to this definition was the definition of monotone advection usirg higher vrder

polyvnomial deseniptions of the numericad flue
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Van Leer's work on HOG methods was extended in o smnnber of efforts in the 1980s.
The PPM {122, 27 15 notable becanse of its continued preeminence in the field [129,
NO1 This method was onginally coneeived iy Lagrangian coordinates conpled with
an Fuletian remap, bt is equally at howe o purely BEulertan coordinates {123)0 A
signiticant advance in HOG methods was made with ENO methods {61, 69, 66). These
methods extended the HOG method to an arbitrary high order of accuracy.

Perhiaps of equal importance to the development of HOG method has been the
advent of TVD {130, 61] and TVB [169] methods. The criteria defining methods to
be cither TVD or TV apply to HOG methods. The class of TVD (and consequently
FVB) methods is quite large and it is usually not difhicult to show a direet corre-
spondence hetween these methods and the HOG methodology.  This idea is key to
the analysis that follows.

This chapter s divided nto five sections. The second section gives a basie in-
traduction to HOG miethods. The following section describes basie eell-average and
poant value algonthms considered here, This s followed by o presentation and discus-
ston of the performance of the methods. The fifth section has conclusions and dosing
tentrks.

9.2 High-Order Godunov Methods

As poted above, the HOG tiethods nse i nonlinear piecewise polynomial interpolation
to define their tanienical fluxes i conjunction with a Riemann solver.

The schematic representation of a secomd-order wethod is shown in Fig. 9.1, As
can be seen by comparnng this with Fig. 1.5, the only difference between them is in
the reconsteuction step, which i turn impacts the solution in the small.

A numerical flux is determined by the two states meeting at any given eell edge
and the Riemann solver, In Godunov's method, the cell.edge values are equal to
the cell-average tor cell center) values. Thus, a zeroth order polynomial describes
the vanables distribution in any given cell. An i tegration of the reconstructive
polynomial over the cell trivially recovers the cell-average.

At this point in the exposition, it is helpful to coneretely state what is meant by

s cell-average or poist-value-based interpolation.

Definition 7 (cell-average reconstruction) - picce wise polynomial reconstruction
1s cell-average based of the average of the reconstruction over the cell is equal to the

cell-average.

Definitica 8 (point-valuc reconstruction) Pomnt-valur mterpolation 1s more loosely
defined. The precownse polynonual reconstruction 1s a polynomial of some accuracy

interpolating the data within a qucen eell.

The polynomial i the point-value reconsteuction can obey any number of possible

cepnxtenints Nasedd e washns derivatioe s et At :imﬂf‘. et obared 1



Initial|Data

Aveqfing and Reconstsuction

Solution in the Small

Reavenaging

Figure 9.1: The steps of Godunov's methods are shown for a higher order polynomial
reconstruction. The solution in the small takes place with data that has been time
centered over the domain of dependence of the local characteristics.
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the data. In a sense, the cell-average reconstiuction is a subset of the point-value
reconstruction based on the restriction to an antegral constraint based on a cell-
average.

At this point, a deeper mecaning should be gleaned from the above presentation of
Godunov’s method. Godunov's method has as its basis the idea of cell-averages. The
cell-averages of the dependent variables are conserved by the scheme. In the above
algorithm, the cell-averages represent the guantities used in the method derivation.
The use of cell-averages fits nicely into the theory of weak solutions given in Chapter 2.

The question to ponder is whether it is necessary for the cell-averages to be used
exclusively in the difference schames. The consesvation ferm of the finite difference
scheme ensures that the cell-averages are conserved. The key question segards the
accuracy and efficiency of the approximation. At a more philosophical level, the
generality of the design principle comes to play. Because the point-value philosophy
1s more general it lends itself to extension in multiple dimensions and other types of
probleins with greater case than the more restrictive cell-average reconstruction.

The formulation of Godunov's method implies the use of some cell-average inter-
polation. The use of the divergence theorem to transform the integrals to forms more
amenable to numerical treatment changes the situation somewhat. It is necessary to
compute the flux functions in order to compute changes in the cell-averages. The
conservation is not effected by this change regardless of the method used to com-
pute the fluxes (as long as j,,; = ."} irregardless of what cell is being computed).
The upwind principles embodied by Riemann solvers and appropriate monotonicity
constraints on the reconstruction ensure that the fluxes are of & guality nature.

Point-values of the function being advected should be reasonable representations
of the function in any given control volumne and by the mean value theorem should be
fairly close to the cell-averages. As noted in [199). the cell averages and point values
differ by O{Ax?). These values should certainly be icceptable for the computation of
fluxes. because the form of the difference equatiuns conscrves the cell-averages. Most
classical difference are based on point-valu- 1cerpolation (or can be thought of in
this way).

The cell-average basis makes good theotetical and logical sense. Given a finite
volume discretizatior acd taking into acconnt a Gibbs-type error would imply that
you could orly know the cell-averages. The point of importance is how to ronstruct
a piecewise ~econstruction for the purposes of computing fluxes.

9.3 Description of Polynomial Reconstructions

As noted in the previous section, | examine two approaches to reconstraction in HOG
methods. The eell-average formulaion is more theotetically pleasing, but the point-

value formulation is simpler and seems more natural af finsd glaaee
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9.3.1 Cell-Average Reconstruction

This section of the chapter concerns the construction of piecewise polynomials of the
cell-average type.

The canonical cell-average reconstruction is used in Godunov's method, i.e.,

P(z)=u,,z€ [z"},x,”] . (9.1)

This inethod has first-crder accuracy and trivially has the cell-average reconstruction
property.

A second-order method widely used for HOG type algorithms (123, 179] is defined
by the reconstructive polynomial

(z—1z,)
A,x’ T € [‘"!"H}] '

P(z)=1u,+Au, (9.2)
The slope, ATu/A,u, is a limited estimate of du/dz at the cell center, z,. The
limiters used were discussed in Chapter 8. Integration over the cell confirms that
this reconstruction has the cell-average property. This scheme is compared with a
point-value type of reconstruction in Section 9.4.

The third form of cell-average reconstruction is the MUSCL reconstruction {120,
147, 45). This form is particularly useful because it has a parametric form and thus
is actually a family of schemes. The polynomial is based on Legendre polynomials,
and thus has the desired cell-average reconstruction property. The basic form of the
scheme's reconstruction is

P(z)=u, + ! ( $,-4 +s";) (z -
- 3
3“(,4 i) {" ”) A,;] cr€fsyn,) . (03)

Here .i‘_% = Q(l,r)s”* where Q(1,r) is a limiter and 3,-4 = A,_;u/A,_;x. Ta-
ble 9.1 gives the types of schemes that arise for different values of k. Care must be
taken in the use of limiters with this scheme, as was discussed previously (S~ction 8).

One problem with this scheme is the definition of the stencil used for the limiters.
If the stencil is not chosen correctly, the scheme, although stable, is not TVD, and thus
be oscillatory. In general, upwind biased limiters used with this scheme do not produce
TVD results because the upwind biased gradients used in defining the reconstruction
apply their information throughout the cell, thus violating the assumptions made with
an upwind biased stencil. This problem can be cured through centering the stencil in
some manner. One option is to center the limiters, but this has a detrimental impact
on the scheme's resolution.

Before moving onto point-value based reconstructions, some comiments must be
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Table 9.1: The type of scheme produced for various values of & with the MUSCL
reconstruction.

r—

% Scheme
1 one-sided, second-order
1 0 upwind, second-order

1/3 upwind, third-order

I centered, second-order

made concerning ENO type schemes. The powerful PPM method is based on cell-
average reconstruction. This scheme uses a quadratic cell-average reconstruction.
Another concept used with this schemne is a primitive function that is used to define
values of u at the cell interfaces. The pritaitive function of u is defined by

l'(.t)=/_‘i‘n(.r).§.r. (9.1)

This concept is put to greater use in the derivation ENO schemes [64]). The actual
reconstruction takes plact: with the primitive function. This reconstruction is then
differentiated to give the reconstruction to u(x). By inspection, this scheme has the
cell-averaged reconstruction property. One important caveat is that this does not
generalize to multiple dunensions except through dimensional splitting. This is due
to the lack of a generalization of the primitive function concept to multidimensional
cases.

To test the cell-average reconstruction | used two test problems: one with a sinooth
nearly discontinuous form, and a second with a smooth local extrema. The first
problem was used to test the PPM (122, 27] method, and has the functional form

f(z) =tanh(x) ,
the second problem is a Gaussian distribution with a standard deviation Az = 3
f(z)=exp [- (:’) /2.’3:] .

Both are plotted over the range £ € [-10,38].

The results for these funitions with Godunov's method are shown in Fig. 9.2,
The large jumps result in a large amount of diffusion in the solution as given by the
theory shown in Chapter 8. By going to a sccond-order algorithm, the results improve,
Figure 9.3 chows the hasic second-order BOG algorithm with the minmod Emiter
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The diffusion has been decreased because the jumps have diminished in magnitude.
By using the central limiter these results improve, and by using the superbee limiter
the results improve again. This is shown in Figs. 9.4 and 9.5. With the CGaussian
distribution, the superbee has overcompressed one location, which is typically the
beginning of forming a false discontinuity. The use of cell-averages is diffusive, (in
fact TVD see [64]) and results in the immediate clipping of an extrema in the solution.

Figure 9.6 shows the reconstruction using the MUSCL interpolant with x = 1/3,
The use of three argument limiters makes this a TVD scheme, but as noted in Ckap-
ter 8 the three argument limiters are more diffusive than the two argument limiters.
The tanh (z) grid is too coarse to capture the discontinuity with these limiters.

The methods for reconstruction given above aree contrasted with the methods
discussed in the following section for form and complexity.

9.3.2 Point-Value Reconstruction

In this section, I introduce the general concept in point-value based reconstruction
and compare some specific examples with the cell-average formulation in Section 9.4.

If, for instance, the cell-averages are not used to derive the fluxes, the scheme
still mairtains its conservation. The canonical example of this is the Lax-Wendroff
method. This method is conservative, but its HOG analog described in Chapter 6
does not use a reconstruction, which is of 2 cell-average variety.

The integral average of the Lax-Wenn.uif polynomial over a cell z € [zj_*,z, + ’]
yields

4
/‘ l’: P, (z)dz:u,-{-ési(sJ,& —8,_;) ’ (9.5)
,-
which does not equal u, unless 8,1 = 8,41

With the inclusion of slope limiters, this scheme becomes the symmetric HOG
method (see Chanter 6). These limiters can either be upwind biased or centered in
their support (see Chapter 8) . These schemes are defined by changing s , p - 5,**
in (3.12a). Here 3, are defined with appropriate limiters (132, 134).

In Chapter 6, the scheme above was extended to include a quadratic interpo-
lation based on the same availabie data (one degree of freedom is not used in the
above schemes). Although not stated in Chapter 6, this schems= is the analog tc the
MUSCL reconstruction using Taylor rather than Legendre polynomials. This scheme
is described by the reconstruction

2
Piz)= u,+% (5,_% + .3”%) (z—z,)+x (.i”} - .i,_}) gz—A—:—’)— » Z € [zn%,z”%] .

(9.6)
The lower operation count in the above equation is evident by comparing the two
forrns. The family of schemes produced for differing values of x is described by
Table 9.2. In the following section, the limiters used with these schemes are discussed.
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computational grid.
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Table 9.2: The type of scheme produced for various values of & with the quadratic
HOG reconstruction.

K Scheme

-1 one-sided, second-order
0 upwind, second-order
1/2 | wupwind, third-order

| centered, second-order

Another interesting cell-average form can be found through imposing the con-
straint on the syinmetric HOG scheme of giving a cell-average reconstruction. The
scheme that results is
Az (3,1 =3,.1) ) 3405 -1) is€ [r,7,,]

PJ(I)=")- 8

+ (9.7)

5,_*(.1' -1I,):x€ [z’_;,z,]

Caution must be used with this scheme with regard to retaining TVD properties.
In general upwind limiters do not produce a TVD scheme because the information
fromi the upwind limiter is passed downwind via the correction terin that assures
ihe cell-average property, but a three argument centered limiter does not have these
difficultics.

As | did in the cell-average section, the point-valuc interpolants are tested. In
both cases shown below, three argument centered limiters are used. In Fig. 9.7
the symmetric HOG method is shown and in Fig. 9.8, the quadratic HOG (x =
1/2) method is shown. The threc argument limiters are too diffuse to capture the
discontinuity in the tanh (z) function. The figures also show how the interpolants are
(! continuous at the cell edges. Both are roughly cquivalent to the MUSCL method

in accuracy.

9.4 Results

This scction presents results using methods described in the previous sections. Results
cover the resolution, accuracy, economy, and gencral quality of the solutions. In order
to do this, three types of problems are examined: the scalar wave cquation, Burgers’
equation. and the Euler equation. The test problems are all discussed in Appendix A
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Table 9.3: Sum of numerical viscous flux for the scalar wave equation test problems
at ¢t = 250.0.

Scheme Sine Squnre(T ~Square
(3.124) upwind hiased 30.84 10.95
(9.7) npwind biased 31.36 43.27
(4.12a) symunetric .67 61.80
(9.7) symmetric H3.83 60).81
(9.6) x = 1/2 minmaod 53.94 60.96
(9.3) & = 1/3 minmod 53.79 60.79
(9.6) & = ' /2 centered 13.65 24.69
(9.3) x = 1/3 centered 12.97 25.29
(9.6) x = 1/2 MUSCL 30.25 39.51
(9.3) » = 1/3 MUSCL, 30.52 40.06

9.4.1 Scalar Wave Equation

In addition to a comparison of the qualitative appearance of the results, several
quantitative mecasures of algorithmic performance are used: the peak values in the
solutions, the total vasiation of the solution at the end of the test and a incasure
of numerical viscosity. The measure of nuinerical viscosity is made by a technigue
described in a general sense in [30). This idea was expanded on by the author in
Chapter 8. The gist of the technique is to compare the numnerical fluxes of a high-
order technique with that of the Lax- Wendroff method and denote the difference as
numerical viscosity. The results for various methods using this approach are shown
i Table 9.3. For the schemes that are TVD for both construction techniques, the
cell-average reconstruction carries less numerical viscasity, but when the schemnes are
not TV, cell-average reconstruction is more viscous. This general conclusion is born
out by other depictions of the data.

The results shown in Table 9.4 show that, in general, the two methods of re-
construction yield sumilar results for similar schemes. Except for the upwind:biased
Lax-Wendroff type scheme, these results are consistent with the mcasure of numesical
viscosity. Figure 9.9 shows the excelient results obtained with the upwind-biased Lax-
Wendroff TVD scheme. Making this scheme a cell-average reconstruction destroys its
TVD property and makes the results {shown in Fig. 9.10) quite poor although the

sraviomnrn valaes are frnproved
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Table 9.4: Maximum profile values for the scalar wave equation test problems at
t = 250.0.

Scheme Sine Squared | Square
(3.12a) upwind biased 0.9197 0.7108
(9.7) upwind biased 0.9481 0.7598
(3.12a) symmetric 0.8717 0.6037
(9.7) symmetric 0.8689 0.6030
(9.6) x = 1/2 minmod 0.8690 0.6032
(9.3) x = 1/3 minmod 0.8689 0.6031
(9.6) x = 1/2 centered 0.9602 0.7795
(9.3) & = 1/3 centered 0.9603 0.7799
(9.6) x = 1/2 MUSCL 0.9394 0.7519
(9.3) x = 1/3 MUSCL 0.9334 0.7487

In the case of the symmetric HOG scheme. the method remains TVD after its
transformation to a cell-average “econstruction. Figures 9.11 and 9.12 show the results
obtained with these methods. The point-value reconstruction gives slightly ! -gher
resolution and less viscosity, but the cell-average reconstruction results in a solution
with better symmetry properties.

As shown in Figs. 9.13-9.16 these results carry over to the quadratic reconstruc-
tions using the minmod limiter, but not to the centered limiter, which slightly favors
the cell-average reconstruction from every perspective. This included the qualitative
appearance of the solutions. The classic- MUSCL (nonTVD) solutions are similar,
but the results do not favor the cell-average reconstruction for the square wave. In
this rase the oscillations are worse.

9.4.2 Burgers’ Equation

This section of the chapter discusses the order of accuracy of the reconstructions and
their subsequent solutions.

Table 9.5 shows the raies of conveigence obtained with some of these methods
when the solution is smooth. In cvery case, the rates of convergence obtained with
the point-value reconstruction are superior, in some cases by quite a margin. This is
cqually true for the solutions after a shock has formed. Table 9.6 shows this quite
clearly and in some cases the disparity in performance is quite profound.
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Table 9.5: The order of convergence in several norms for various schemes for Burgers’
equation at ¢ = 0.2 when the solution is smooth.

Scheme Ly | Lz | L.
(9.2) 2,16 | 217 1 1.95
(3.12a) upwind biased | 2.16 | 2.17 | 1.95
(3.12a) symmetric 20131 1.86 | 1.32
(3.12a) symmetsic 1.87 | 1.60 | 1.23

(9.6) s = 1)2TVD {201 | 183 ] 1.28
(9.3) s = 1/3°TVD 2021 1.7 | 1.22
(9.6) & = 1/2 MUSCL | 205 | 1.72 ] 115
(9.3) & = 1/3 MUSCL | 1.88 | 1.57 | 1.10

Table 9.6: The order of convergence in several norins for various schemes for Burgers’
equation at ¢ = 1.0 when the solution has a shock.

Scheme Ly | La | L.
(9.2) 1.5211.10 | 0.61
(3.12a) upwind biased | 1.52 | 1.10 | 0.5]
(3.12a) symmetric 1.5311.00 | 0.47
(9.7) symmetric 0.71 1 0.58 | 0.36

(96) TVD s =1/2 [ 1.61|1.05]0.53
(93) TVD x =1/3 | 1.60 | 1.07 | 0.56
(9.6) MUSCL x = 1/2 | 1.43 | 1.02 | 0.54
(9.3) MUSCL & = 1/3 | 0.98 | 0.78 | 0.53

,
[
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Tab)e 9.7: L, norms for density and velocity in Sod's problem, including times for

reconstruction for each solution.
Scheme Density Velocity | Times
(9.2) 581 x 1072 | 113 x 107% | 097
(3.12a) upwind biased | 5.86 x 1073 | 1.15x 1072 | 0.94
(9.7) upwind biased | 8.15x 1072 | 118 x 1077 | 0.93
(3.12a) syminetric 6.50 x 1072 | 1.02x10"? | 1.08
(9.7) symmetric 6.40 x 107> 1999 x 10~ | 1.14
(9.6) TVD x = 1/2 | 6.44x 1072 | 1.01 x 10°? | 1.18
(9.3) TVD x = 1/3 6.44 x 1072 [ 1.01 x 10" | 1.34

9.4.3 The Euler Equations

This section shows the performance of some of the methods discussed in this chapter
on a system of conservation laws. As is common practice, the Euler equations are
solved because of their great practical interest. It should demonstrate a “true” picture
of cach methods capabilities. For cach of the methods used below, the density and
velocity profiles are shown and the Ly norms of these solutions are given.

The solutions are shown at { = 20. The solutions shown below use Roe's approx-
imate Riemann solver and a chezracteristic variable based reconstruction [63, 200).
The TVD schemes using the three argument limiters employ the centered limiter for
the nonlinear waves in equations and a superbee limiter for the lincarly degenerate
wave. For those methods using two argument limiters, the ronlinear waves use a van
Leer limiter.

As shown in Figs. 9.19-9.25, the results obtained with these methods for systems
of equations are all quite good. Each solution with the exception of the upwind-hiased
Lax-Wendrofl type has a butnp in the velocity solution at the end of the rarefaction
wave. The solution obtained for the shock wave with this method is slightly better
(two cells wide rather than three). Table 9.7 shows the methods’ Ly norms for density
and velocity. In general, the results are similar here as well. For the upwind-biased
Lax-Wendsoff TVD methods, the cell-average form is noticeably infetior whereas the
cell-average symmetric HOG method is supeticr to the corresponding point-value
reconstruction. In general, the differences econotay of use are inconsequential except
foor the claseir-MUSCL - Legendre formulation.
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Figure 920: The density -+ velocity solutions to Sod's problem with an upwind-
biased Lax-Wendroff TVD e, 4



Figure 9.21: The density and velocity solutions to Sod’s problem with an upwind-
biased Lax-Wendroff TVD method with a cell-average correction.
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Figure 9.22: The density and velocity solutions to Sod’s problem with a symmetric
HOG method.



}I Figure 9.23: The density and velocity solutions to Sod’s problem with a symmetric
| HOG method with a cell-average correction.
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Figure 9.24: The density and velocity solutions to Sod’s problem by a quadratic
Taylor polynomial based HOG method.




Figure 9.25: The density and velocity solutions to Sod’s problem by a quadratic
Legendre polynomial bazed HOG method.
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9.5 Concluding Remarks

The results in the above section show that the method of reconstruction used in
HOG schemes is of some importance to the quality of the results. For cases where
the solution remain TVD, the cell-average solutions are of higher quality, but as
the Burgers’ equation solutions show, are of lower rates of convergence. Where the
schemes are not TVD, the point-value reconstructions are superior and result in less
oscillatory results. For systems of equations. the picture is less clear. The solutions
obtained with all the methods show that the solutions are acceptable and quite good.

The major difference between the two approaches is one of ease of implementation.
For one-dimensional problems, the differences are hardly consequential, but the edge
is with the point-value polynomials. For multi-dimensional reconstructions, the point-
value reconstruction is clearly easier and should be considered for this purpose despite

certain philosophical imadequacies.
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Chapter 10).

Conclusions and Recommendations

Order and Simpl cation are the first st.. tow.rd the mastery of a subject.
Thomas Mann

Life is the art of drawing sufficient conclusions from insufficient premises. Samuel
Butler

In this chapter, overall conclusions are made concerning the preceding work. The-
ses conclusions act as a summary of the results of this work. Following this a number
of recommendations are made concerning future dircctions for research.

10.1 Conclusions

The FCT method is shown to be similar to symmetric TV methods under certain
conditions. This similarity is exploited in inproving the perforinance of FCT. This
improvement is particularly evident in the solution of systems of equations.

With the relationship between FCT and TVD methods firmly established, both
of tiiese methods were directly connected o high-order Godunov methods. This is
accomplished through defining a non-upwind biased geometric version of the Lax.
Wendroff method. Because the Lax-Wendroff method is the basis of the symnmetric
TVD method, the generalization is straightforward. From this, a scheme based on
parabolic interpolation is derived. Further improvements are made through the use
of uniformly non-oscillatory reconstruction methods,

The topic of limiters is then explored in considerable depth. This begins with a
review of the FCT limiters. In this section of the work, Zalesak's limiter is modified
in a similar fashion to the classic FCT limiter.

TVD limiters and their general propertics are discussed in a manner that is more
general than found in the literature. Three argument limiters are revised and ex-
tended with the use of certain limiter properties. The use of two parameter limiters
is compared with three parametes limiters. It is shown that three paramecter limiters
induce a significant amount of numerical diffusion in a solution when compared to
the analogous two parameter limiter. In addition, a gencral class cf limiters referred
to as nearly-TVD are discussed. These include TVB limiters, but also new classes of
limiters such as generalizea average limiters and S-Limiters. The ULTIMATE limiter
is also discussed.

Finally, the topic of reconstruction in high-order GGodunov methods is exam-
ined. This topic is precipitated by the work on high-order Godunov analogs to
FOT/symmetric TVD methods. These high-order Godunov methods do not use
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Figure 10.1: The significance of this work is shown in relation to the rough genealogy
given in Cha~ter 2.

reconstruct,on step that requires the interpoiant to have an average value in a grid

cell equal ta the cell average in that grid cell. This property is discussed, and proper-

ties of the solutions using both standard and new high-order Godunov methods are

examined. The lack of the . «ll-average property is demonstrated to not have signifi-

cant negative consequences, and lor cerlain situations o have positive consequences.
The principle advances made in this work can be seen graphically in Fig. 10.1.
These conclusions can be summarized as follows:

o FCT was improved and shown to be part of a more general family of methods.

o Combined FCT and Syminetric TVD methods were extended into the HOG

family of methods.
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e A general procedure for improving FCT limiters has been described.

o A more general theory on limiters has been developed and used define new
limiters.

e The difference between cell-average and point-value HOG schemes has heen
defined and explored. The point-value HOG schemes provide reliable solutions
and improve on the cell-average HOG schemes when the scheme is not TVD.

10.2 Recommendations

With these conclusions in mind a nunber of secommendations for future research can
be made. These do not cover the range of needed work, but represent some important

needs from one perspective.

o In light of the results of this research and the literature, parabolic methods are
worth exploring in much more detail. The added degree of freedom beyond
linear interpolation allows the algorithim to be more flexible than second-order
methods. Currently, the PPM method is the premier scheme for solving conser-
vation laws. A large numnber of potential parabolic schemes exist, and should
be studied in more detail. The use of parabolic schemes is need of assessment
especially in the light of the results presented in Appendix F.

o One of the keys to the PPM algorithm is the use of a discontinuity detection
algorithm [122]. This algorithin was the inspiration for the superbee limiter [132,
176]. The use of fuzzy logic (201, 202] should prove useful in designing this sort of
algorithri. More generally, fuzzy limiters could have a more general application
perhaps making limiters that work equally well in smooth and discontinuous
regions of the flow.

e ENO methods should be broadened to include point-value schemes as well as the
ceil-average varicty. In addition, other measures of reconstruction smoothness
should be investigated perhaps using generalized average limiters is some sense.
This is particularly important in the light of recent work [203].

e Smooth particle hydrodynamics (SPH) (204, 205, 206) :nay profit from nonlinear
limiters. These methods typically use artificial viscosity to compute shocks.
Through the use of biased gradient computations at discontinuities in the flow,
(perhaps ENO-type algorithms) the use of artificial viscosity could be done away
with. The resolution at these portions of the flow should also improve.

o Implicit numerical solutions with high resolution methods [196, 198, 207, 195,
15, 145] are important in artospace applications. Currently artificial viscosity
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methods {208, 209} are the preferred choice. The upwind type methods need to
be more cconainical to compete. Research into multigrid acceleration of high-
resolution upwind methods is a clear and present need. Also conjugate gradient
type methods hold some promise [210]. The work of Yee and others [154] on
nonlinear dynamics could provide some useful improvements.

The rule of Riemann solvers in algorithm dissipation is in need of clarification.
Roberts [211] shows that the Riemann solver can cause oscillations for slow
moving shocks even when used with Godunov's metnod. The solution is to use
a more dissipative Riemann solver. This is imnortant in light of the PPM’s
zone flattening algorithm, which is used to deal with such cases. This appears
to be anuther place where fuzzy logic could be useful.

The role of high-resolution upwind algorithms in turbulence rescarch needs to
be established. The work of Boris [77] is controversial with the large eddy
simulation (LES) conununity. Others have used these methods in tughulence
rescarch with success [78, 212, 213, 79). The results renorted in (79 seem to
show that high-resolution methods like the PPM give results indicative of very
high Reynolds numbers. The impact of the design of methods on this use needs
further assessment.

Recently, front-tracking algosithins which are conservative have proven to be
useful {129, 214, 215]. These coupled with adaptive mesh generation [129, 117)
and high-order high-revolution sacthods are powerful solution methods. (lou-
pling these methods to the design of new high resolution methods would be
highly profitable. Other adaptive mesh algorithms {216, 217, 218] show promise.
In addition techniques used in [219] may prove useful.

The use of these methods in radiation transport may be applicable. In discrete
ordinates methods (220, 221] diamond differencing is typically used, although
lincar discontinuous method< 2'so are usecd. Both of these methods could profit
from modern upwind methods in insure positivity of solutions. The lincar dis-
continuous method has beer used for high resolution fluid flow solutions [222).

Multiphase flow presents a number of challenges to the use of this sor’, of method.
Typircally, the algorithins vsed for this type of flow are semi-implicit |3, 2, 223).
Semi-implicit time discretizations age in need of development and would be use-
ful in other applications [93} where problems are stiff in some manner. Multi-
phase flow can also be ill-posed in the sense of Haramard, thus creating difficulty
with Riemann solvers,

Multidimensional schemes are a1: active topic of tesearch. The role of limiters
aned their form is an open question. The methods of Akina 7728, 225 236, 207
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may prove useful in defining multidimensional limiters. The use of ENO schemes
in multidimensions is proceeding [139, 199, 133], but it is in its infancy.

o Multidimensional Riemanu solvers need work. Most current schemes show poor
results because they are not monotone (based on a wave analogy [228]). Recent
work on flux-splitting in several dimensions [229] may prove very useful in a
nuimber of regards and needs furthee development.

Other research is also exciting. The use of high-resolution upwind methods with
incompressible flow computations, weather simmulations and other applications [188,
230} shows considerable promise.
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Appendix A.
Test Problems

A.1 Introduction

The methods described in this rescarch are used to solve three test problems: the
scalar wave equation

Ju  du
'(',}7 +(l-,(); —-0, (Ala)
inviscid Burgers' equation
o d (1,
5{+,§;('}_“)_0‘ (A.1b)
and the Euler equations (see Appendix B for a more complete discussion) for an ideal
8% U OF
7]
n + poi 0, (A.1c)
where - (
P m

U=}m| . .F= m?/p+p
E  m(E+p)/p |

h L

For the Euler cquations the variables are defined m = pu where u is the fluid
veloaity, density, p. and Yhe pressure, p, are tOated Yo the energy, Y., by an couaton
of state (for an idcal gas),

P="£(~'—')v

where 2 = E/p — 1/2u? and 9 is the ratio of specific heats for «he gas in question.

A.2 Scalar Wave Equation

In this section, the test problems used (ur the scalar wave equation are described.
Four initial conditions are used for the analysis: a square wave with a « idth of 10
cells, a sine wave over one full period with a width of 20 cells, a sine sqaated wave
(half of a period) of a width of 25 cells and a triangle function with a width of 10.
The advective velocity is taken to be unity. Each of these test problems is shown in
Fig. A.l. The exact solution for the scalar wave equation is given by

—.
prs
te

wlr Y= (7 —at)
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where u is the advective velocity and u, (r) is the initial condition.
The course appearance of several of the figures is misleading. The two funetions
based on sin(r) are smoouth. The course natvre of the plots resuits from the low

resolution of the discretization.

A.3 Burgers’ Equation

The test problem consists of N equidistantly spaced cells on a domain r € [0, 2x).
The initial condition is sin(r). At ¢ = 0.2 and t = 1.0 the solution is compared with
the exact solution. At t = 0.2 the solution is smooth; however. at t = 1.0 the solution
has developed a shock. The CFL number is = 0.4. The solutions at these two times
are shown in Fig. A.2. The exact solution is produced using a formula found in [67],
which is

u(r,t) = (,% m'in l/: u,(r)dz + é‘-t (z - y)’] . (A.3)

where the definitions are the same as for the scalar wave equation.

A.4 The Euler Equations

The Euler equations are used as an example of the solution process on a systemn of
cquations. The Euler equations are perhaps the most common application of the
methods discussed in this work.

A.4.1 Sod’s Problem

The problem used by Sod [41] to test a number of methods for solving the cquations
of compressible flow has become a standard test problem. The initial condition for
this problem consists of two semi-infinite states separated at t = 0, and the left and
right states are set to the following conditions:

for X < 50.0,

’ T 1 ' 1.0 '
u, |=100] .
| P | . 1.0 ‘
and for X 2 50.0 F o1 ¢ X
TR 8.0
up | =100} .
| pr | | 0.1 ‘

234



(a)

0.8 t

021 | 1

0 20 40 60 80 100

(b)

0 20 40 60 80 100

Figure A.1: The exact solutions to the test problems used in the scalar wave equation
tests. These are the square wave, sine wave, sine squared wave and the triangle wave.
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Figure A.1: continued.
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Figure A.2: The exact solutions to the test problems used in the Burgers’ equation
tests. The figures are shewn at t = 0.2 in (a) and ¢t = 1.0 in (b).
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with v = 1.4, The domain is discretized into 100 cells of equal lengths {(Az = 1.0)
and the CFL number is set to 0.9. The solutions are shown in Fig. A.3 at ¢ = 20.
The exact solutions can be seen in Fig. A.3. These solutions are computed with the
method described in Appendix B for the exact solution to a shock tube problem.

A.4.2 Lax’s Problem

Lax’s problem is a shock tube problem similar to Sod’s, but with one of the two
semi-infinite states used as initial conditions not being at rest. The initial condition
for this problem consists of two semi-infinite states separated at ¢t = 0, the left and

right states are set to the following conditions:

for X < 20.0, ) _ -
TL 2-24,
Uy, = 0.69?‘ '
_ pL J i 3.52% J
and for X > 50.0, ) - i ;
o 2.0
uR — OU 1
i PR ] i 05 i }

with v = 1.4, The domain is discretized into 100 cells of equal lengths {Az = 1.0)
and the CFL number is set to 0.9. The solutions are shown in Fig. A4 at t = 15.
The exact solution can be seen in Fig. A 4.

A.5 The Vacuum Problem

The vacuum problem is a shock tube problem where two identical states are moving
away from each other at ¢ = 0. The states are kinetic energy rich, which causes
PUNPpEY W PO PP NP SOULP RS .Y ¢ Ry R L I PR I AU [P Dl N T 1) Sy e
PIrOLNCEHILS 1O LT TIHILE dIICICee SUiciles. 1 1€ kvl COIIUILIVEL 1UD LIS PUULECLL)
consists of two semi-infinite states separated at t = 0, the left and right states are set

to the following conditions

for X < 50.0,
(] | 10 ]
up | = | =2 |,
PL 1.0

L B L .
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Figure A.3: The exact solution for Sod’s Riemann problem. Note the appearance
of the rarcfaction wave running from about z = 30 to z = 50, which is a smooth
transition. The contact discontinuity is at about z = 65 and the shock is at z x #5.
Note that the transitions between states for these two structures ase sharp. The
density and energy profiles show more structure thaa the velocity or pressuse profiles
because of the contact discontinuity.
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Figure A.4: The exact solution for Lax's Riemann problem. Note the appearance
of the rarefaction wave running from about z =5 10 to r = 25, which is a smooth
transition. The contact discontinuity is at about z 23 75 and the shock is at z = 90.
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Figure A.4: continued.
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and for X 2> 50.0,

- ; - X
PR 1.0
Upn = 2.0 ’
[ pe | |19

with 9 = 1.4. The domain is discretized into 100 cells of equal lengths (Ar = 1.0)
and the CFL number is set to 0.9. The solutions are shown at { = 10. An additional
caveat is that the computation of the stability criteria also involves the condition
based on a condition similar to the “tangling” or “emptying” conditions in Lagrangian

computations, i.e.,
. Ar
l""l - “J'il

where (* € {0,1]. The exact solution can be seen in Fig. A5.

A.5.1 Blast Wave Problem

This blast wave problem was used hy Woodward and Colella [44] to test a varicty
of high-resolution methods. This test turns out to te an extreinely stringent test of
numerical methuds for solving hyperbolic conservation laws. The initial conditions
consist of the following:

for X < 10.0,

r T [ 1.0
uL = 0.0 ’
{ PL ] | 1000.0 )
fOl' lo.o > x > m-o' > 9 p 9
TL 1.0
ur = 0.0 .
[P} 001
and for X 2 90.0 C |
TR f 1.0
un = 0.0 ’
| PR . 100.0 ‘

with 4 = 1.4. The boundary conditions play an important role in this problem and
are refective at both the left (X = 0) and right (X = 100) walls. The soli:tions are
shown in Fig. A6 at £ = 38). The solution develops into two strong shock waves that
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Figure A.5: The exact solution for the vacuum Riemarn problem. Note the appear-
ance of the rarefaction waves running both directions from the initial discontinuity.
The internal energy plot (c) shows error near the vacuum because of round off errors.
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collide. The result of this is a complex set of shock and rarcfaction waves as well as
contact discontinuities in a small region of space. These interactions are exceedingly
difficult to resolve on a fixed Fulerian grid without prior knowledge of the solution so
that the grid can be locally refined (certain adaptive meshing procedures can avoid
the need for a priori knowledge of the solution). The “exact™ solution can he seen in
Fig. A.6. This “exact” solution was computed with 2000 grid cells at a CFL number
of 0.95 using a cell-centered second-order HOG method. The superbee limiter was
used on the linearly degenerate field and van Leer’s limiter was used on the nonlincar
fields (see Chapter 8 for a complete discussion of the limiters).

The solution of Riemann problems botk cxactly and approximately i» discussed
in the next appendix.
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Figure A.6: The “exact” solution for the blast wave problem. Note the lasge amount
of solution structure between z = 60 and z = 85. The two strong blast waves are
interacting and are in the process of passing through one another. The interaction
region is richly populated with contact discontinuities and shock waves.
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Appendix B.
The Equations of “oxipressible Flow and
Riemann Solvers

B.1 Introductinn

When developing solution techni .+ e - uations of compressible flo'y, the common
practice is to solve the equation iu a £ ic=ian frame of reference. For certain classes of
problems, a Lagrangian or Lagrangian followed by a transiation back to an Eulerian
frame methods has advantages.

Much of the devclopiment of current high-resolution numerical methods for the
solution of the Euler equations was the product of just such algorithms, although
development has concentrated on purely Eulerian scheines in recent years. Godunov's
method [56] is the basis of van Leer's work [60]. These methods find the solution
to a Lagrangian flow system and then remaps it to a fixed (or moving) Eulenian
grid. This methodology can also be thought of as operator splitting [156] based on
convective and sound waves. The piecewise parabolic method [122] extended van
l.eer’s method. Godunov and coworkers also introduced a purely Eulerian variant
of Godunov's method {57]. which can be thought of as the basis of currert purely
Eulerian methods.

In modern high-resolution Eu.crian algorithms, it is common to use approximate
Riemann solvers of some sort to compute correct wave propagation, because exact
Ricmann solvers [60, 41) are expensive. As a solution to this problem, several re-
scarchers have developed approximate Riemann solvers. Each of these has seen its
primary development and use in an Fulerian frame. In this appendix, seven types are
explored:

1. a naive Riemann solver,
2. the Lax-Friedrichs Riemann solver [55),
3. the local Lax-Friedrichs (LLF) Riemann solver [65, 66],

4. the simple Riemann solver introduced in [30] and sefined in [126, 231}, known
as the HLLE (Harten, Lax, van Leer and Einfeldt) Riemann solver,

5. Roe's approximate Riemann solver [63], discussed in (232},
6. the Riemanp solver of Engquist and Osher [127),
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7. and flux splitting like that of Steger and Warming [125].

The next section discusses the flow solution algorithms and derives several approx.-
mate Riemann solvers.

B.2 The Equations of Compressible Flow

The Euler equations represent the consesvation of mass, momentum, and energy in a
fixed coordinate system and in one dimension are

dp dm _
(7—1 E = 0 N (B.ll)
dm  d [m?
—-'(,” +;,E(7+p)=0. (B.1b)
and 3E &
( m
—(,)—l-+5;(-;(£-rp))=0. (B.1c)

Here p is the density, m is the momentum (m = pu, where u is the flow velocity),
and E is the total energyv. The other variables are related to the pressure p through
an equation of state

p=/S(p.9) . (B.1d)

wherei = E/p~1Lu?. For an ideal gas, the equation of stateis p = (E - %m’/p) (1-1)
with 7 being the ratic of specific heats. This system is hyperbolic and has three chas-
acteristic velocities u — ¢, u, and u + ¢, where ¢ is the sound speed. For an ideal
gas
i L
P

Fairly directly, this systetn can be converted to a system of equations in conser-
vation form for a coordinate system moving at the flow velocity. This introduces a
change of coordinates from the variable z to § where £ is the mass coordinate defined
by

c

{=/pdx, ol’d‘:pdt.
The system of equations is then
dr Ou
5;—-8-E=o, (8.25)
éu dp _
5.;’?- . (B.2b)




and

e  dpu _ ,
o + B (B.2c)

In this equation set 7 = 1/p and ¢ = rE. This system also has three characteristic
speeds: —C, 0, and C, where C* = qp/r is the Lagrangian sound spr. | for an
idcal gas. The ideal gas equation of state in terms of the Lagrangian variables is
p=(e-ju)(r-1/r

With remap equations the solutions found with these equations can be remapped
to an Eulerian grid (as is discussed in the next section) and produce a solution that
is equivalent to the solution of the first equation set. The three remap cquations are

dp dp _

T r uas = 0. (B.3a)

om om

'5‘" +u5;- =0. (“:’b)
and

or JE

o‘ + u.é;' - 0 . (B-:’c)

B.3 Solution Algorithims

In this section, Godunov’s method is described with specific attention being given to
the Lagrangian formulation with an Eulerian remap. This is followed by a discussion
of each of the approximate Riemann solvers used in this study.

B.3.1 Exact Solution of the Riemann Problem

The construction of the exact solution to the given Riemann problem follows the
algorithm given :n Sod's paper [41] with improvements suggested in (60, 177). These
improvements ccenstitute a Newton-type iteration to solve the nonlinear governing
equations for the Riemann problem as suggested by van Leer. 1he remainder of
this section describes the algorithm used to find tise exact solution to the Riemann
problem. Following this, the #xact solution to the particular Riemann problem which
is to be solved numerically is shown for the primitive variables.!

This solver described blow uses shock relations at the shock and rarefaction rela.
tions at a rarefaction. The Riemann solver used by Colclla [121] uses shack relations
for both types of waves. This results in a much simpler solver. For a detailed look at
the Riemann problem sce the review paper by Menikoff and Plohr {68].

The algorithm that follows begins from initial data which is defined in two states
right, r, and left, I, which aze shown graphically in Fig. B.1. The basic algorithm is

'The primitive vaniables a-e the density, p. the velocity. u, the internal enrrgy. ¢ and the pressure,
p.

te
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Figure B.1: A representation of the initial conditions for the Riemann Problem.

given below.

Algorithm 8 [Ezact Riemean Solulior. for a Shock Tube)

Initial condition, (p;. u,.t,.p,)r, (p,.u,.t,,p,)r

P-=r§(m+n.)+%\/ Tofieit pe) (y, 4 u,)
begin

Do While not converged

begin

begin
if p. > p then

M = iam | T B 4 Tt
v _ (M) + 90
(ll[.) = 1_!2)'(_#&

else

endif
if p. > p, then

M, = /3PP ny,—'% + 1{.—;—'
3
(“n)' = —‘ﬁz()—&t"l)‘:h




we = i — Begphl

4 i f

o sy~ Bogrle
14

e — U
P = P () = (wre)
end
check convezgence
end

U, = &(ulo + I‘,.)

This algorithm was used to produce the sclut’ons shown in Appendix A These
show the characteristics of the exact solution to a Riemann probiem for an ideal gas
when both sides of the initial condition are at vest and the density and pressure are
discontinuous.

B.3.2 Approximate Riemann Solvers

The basis of approximate Riemann solvers is discussed in (40). For a Riemann solver
to be conseivative, the following relation should hold assuming I' is chosen to be large
enough

L 4
/rW(()dgzr(U,+U,)+F¢-l‘,. (B .4a)
This relation can be rewritten to give
/"rwmd( =TU, +F -F,, (B.4b)
and r
/o W (&)df =TU, + F;, - F, . (B.4c)

These relations can be manipulaied to give various approximat. Riemann solvers.
For instance choosing I' = 1/o give the Lax-Friedrichs scheme and [ = max, (A")
gives the Rusanov or Local Lax-Friedrichs scheme.

In this section, six approximate Riemann solutions for the equations in Lagrangian
coordinates are given. The solution using these algosithms gives the “solution in the
small” in Lagrangian coordinates.

The solution in the smail algerithm is isdentical for all three methods desceiled
below except for the details.

Algorithm 7 [Solution in the Small|
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1. For each grid ccll edge, j + 1, compute the right and left variable values from
the reconstruction polynomial, U;(z) = P;(z). Here for Godunov’s method
P,’ (I) = UJ', thus U, = U,’ and U, = 'Jj-H'

2. Compute the solution, U,,, (exact or approximate) to the Riemann problem
with initial states U; and U,.

3. Use U,, to compute the flux functions, Fy,, at the interface j + .

B.3.3 Approximate Riemann Solvers for the Scalar Wave
and Burgers’ Equation

The scalar wave equation, (A.la), is the simplest equation to solve. For a constant
wave speed, a, the solution to the local Riemann problem is

a la|
Jisg = 2 (“:‘+%.t + “;‘+§.r) -3 (“,+g.r - u,~+;,l) . (B.5)

Here the cell edge values are given by the local interpolating polynomials as
u)+§.l = IJJ (IJ-') (B.G&)

and
Uiste = P (Zj010) (B.6b)

where z;, = Zj410 = Tipd-
In [158] van Leer gives the local Riemann solution to Burgers’ equation. Given in
the nomenclature of this appendix this solution restated is

frog = max [max (1,,100)" gmin (wep,00)] . (B

B.3.4 Naive Riemann Solver

This method of closing the equations is included because it is so frequently dune
despite a number of deficiencies. The system is considered to be a set of uncoupled
equations and the terms are considered one-by-one. If a term appears to advect the
variable, such as density in the mass conservation equation or energy in the energy
equation, it is upwind differenced. If it is another term, such as the pressure gradient
in the momentum equation or the work term (pV - u) in the energy equation, it is
centrally differenced.

For the Lagrangian equation set all spatial derivatives are centrally differenced.
This is justified because sound waves travel in both directions from an interface, and
the effect is nearly correct. This is the manner in which the flux corrected transport
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algorithms are implemented (143, 4). As the magnitude of the jump increases, the
errors become larger resulting in unphysical solutions.

B.3.5 Lax-Friedrichs Riemann Solver

The simplest Riemann solver is the Lax-T:iedrichs solver (55]. This solver is the
most diffusive of the solvers discussed in tiis appendix. It corresponds to Godunov’s
method over a staggered grid {200] and has a simple form. The only requirement is
that the CFL condition be satisfied. The forn: of the flux function is

1 1
Fi =3 [F, +F -~ (U, - U,)] . (B.8)

B.3.6 Local Lax-Friedrichs Riemann Solver

Recently [65, 66, 169], the Lax-Friedrichs scheme has been resurrected. This method
is also known more classically as Rusanov's method [233, 189]. It has been changed
to a form known as the local Lax-Friedrichs (LLF). In this form, it is less diffusive
than the classical form of the Lax-Friedrichs method, but still has the advantage of
satisfying the entropy equality. The form of the flux simply depends on the maximum
(absolute value) wavespeed locally and the form is given by

1
Fi, = 3 (Fi+ F, =, (U, -U))] , (B.9a)

where n, = sup, IAf,l For the Lagrangian flow equation, this is equal to

ne = max (C,C,) . (P.9b)

B.3.7 HLLE Riemann Solver

In their paper [30], Harten, Lax, and van Leer discuss several approximate Riemann
solvers in a theoretical context. One of these solvers is derived for a solution containing
the left and right initial state plus one intermediate state. Einfeldt [128] then took
this basis and showed how this theoretical construct could be used as a practical
approximate Riemann solver. Work on this method has also been done by Davis [189).
This method has several desirable properties: its simplicity, ease of implementation,
and satisfaction of entropy inequalities.
The general form of a flux function with this solver is

bES (w) = bpf (u,) | BEbR
fi = 2L (“b‘; = b“:f ) , P (uy — i) (B.10a)

v~ YUte

where b} = max (0, 4,) and b}, = min (0, bf,) The signal speeds b}, and b}, are upper
and lower bounds on the signal velocities, respectively. Reference [231] makes the
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suggestion for the computation of bf, and b},. The formulas are
bl'r = max (“R.mu‘vabﬂ,mar) ’ (B.lOb)

and
b:r = min (aL.min'aLR,min) ) (BlOC)

where ma - .- d min refer to the maximum and minimum characteristic speeds at the
respective ‘acations. The values for a;, come from Roe's linearization that is discussed
below.

For the Lagrangian flow equations, this leads to a straightforward algorithm. The
Lagrangian cell interface fluxes can be written

_C,F(U)) + C,F(U,) B Ci.Ci
- Clr + C'lr Clr + Clr

Fi, (U, -4y, (B.10d)

which simplifies to

]
Flr = E[(F(Ul)"}'F(Ur))—Clr (Ur —U,)] ’ (B'loe)
with 4} in eq. (B.10a) being replaced by Cj,, the largest signal speed, and b, being
replaced by —C;,, the smallest ~ignal speed.

B.3.8 Roe’s Riemann Solver

Roe presented this solver in [232] and the derivation given below gives the same
results. The main difference is that the form given here is useful in the derivation
of the flux splitting scheme. Roe’s approximate Riemann solver uses the Jacobian of
the flux function to derive a characteristic decomposition of the system of equations;
thus in general

du OoF Jdu au :
E‘“f'gx—-—o:}—at-f'/‘-a—x-—o. (B.11a)

where A = JF /0U is the Jacobian matrix. If I define the decomposition as
A= RAR™,

A is a diagonal matrix with the eigenvalues of A on the diagonal, R is the matrix of
right eigenvectors (columns), and R™! is the matrix left eigenvectors (rows). Charac-
teristic equations are then defined as

da Jda
5;4-/\&:0, (B.11b)
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where a = R™'U. These equations can be solved with upwind biased methods to get
physically correct propagation of information for data associated with each separate
wave.

For a scalar wave equation, the expression for an upwind biased flux can be written
as,

fir = 51+ 1) =l e — )] (B.11¢

where L and R refer to the states to the left and right of the cell interface j + 1. For
Roe's Riemann solver and a system of equations, the flux can be expressed as

k
a

F, = % (Fi+F,) - Zl‘f, (a, — a,)] ’ (B.11d)
k

where r* is the k** right eigenvector and

k
O'=l‘,'U'.

Roe defined the Jacobian to be used in this numerical approximation to have the
property

F.-F,=A(U, -U)) (B.11e)

for averaging the values to find A. For the Euler equations, the averaging procedure

is somewhat more complicated than simple averaging, but for the fluid equationt in

Lagrangian coordinates simple averaging suffices. Therefore, the following relations

are used:

1
P = §(m +p), (B.12a)
Ty = %(ﬂ + Tr) ) (Bl‘lb)
and
ch=2. (B.1%)
[{3

When A* can change sign, one slight modification of the above methodology is
used for nonlinear equations and systems; as suggested by Yee [134] an eatropy fix
is implemented for the donor-cell differencing, which modifies the use of the absolute
value in donor-cell differencing of a characteristic speed, by

|z] if || > ¢
¥(z) = : (B.13)
(22 4+ ) J2¢ if|:] < e

if one is dealing with a linear equation set ¢ = 0. The parameter ¢ is determined by
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the following equation [30],

¢ = max [O,a“* - @;,8j4y — “jﬂ'] .

This averaging for the Euler equations requires that a parameter be defined by

Dj,y = (psni/p))'? (B.14a)

which is tn :urn used to define the following cell edge values:

DJ+§“)+I +u,

Uypg = D)*g, Tk (B.14b)
DJ+£H,*| + HJ
HH% = D,'.;; T (B.14c)
and
1 s 178
oy = [(7 —1) (H,,,% - -2-u1+})] , (B.14d)
where P i
H=——+-4. B.14e
(-Dp " 2" (B 14e)
For the Euler equations, the eigenvalues of the flux Jacobian are
(a'.a’.a’) = (u-cu,u+c). (B.15a)

The right eigenvectors form a matrix

R= ("', r’v r:)) = u-—=«¢ u u+c ’ (B'lsb)

and by using




the left eigenvectors form a matrix

B REICEL R ICEDR S

R_‘ = 3 = 1 — 2, 22U -2 . (8.15(:)
l k4 ! -— — .l. l -

Bl [3(n-¥) -3(u-t) 2

For the Lagrangian flow equs. (B.2a)-(B.2c), the flux Jacobian is

.

0 -1 0
A=| —CYy  —utr-1fr -0/ | (B.16a)
—uC?ly rC¥y—-ut(y-1)/7r u(y -1/ ‘

using an idecal gas equation of state. As stated before the matrix has the eigenvalues
of —C, 0, and C, and the corresponding right eigenvectors are

1 1 |
R= C 0 -C ; (B.16b)

| uC—p p/(v-1) —uC-p

the left eigenvectors are

1 1 L u(y=1) 1—=+]
Ty nz'*—g—lw T
-1 11 u(l—19) 1-1 1. ]
R Y P P (B.16c)
L _ 4 ub=1) 1-
= 2C P T

These matrices and the definition of the flux functions above eq. (B.11d) give the
method for solution. Roe {232] noted that the actual implementation for this case is
somewhat simpler because of the great amount of cancelation of terms as they are
multiplied out. The flux vector gives the simplification

o1 1t
fi u. (w4 u) = 4 (= 1) /Cir |

F=|pnl=|p |=] {m+p)=-L(u-uw)C, |- (B.16d)
| ) [pee] | p-u. J

An iuteresting footnote to this discussion is that these expressions were developed
by Richtmyer and Morton [31, pages 342-315] as a lincarized version of Godunov’s
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method. This method was related to the work of Courant, Issacson, and Rees [54] in
order to draw a direct analogy between that method and Godunov's original work.

As is shown below, the right cigenvectors are useful in the derivation flux splittings
for these equations. The full matrices also may be uscful in visualizing the extension
of this method to real gases with more general equations of state.

B.3.9 The Engquist-Osher Solver

The Engquist-Osher Riemann solver [127] has a number of useful properties. It is
somewhat different than the others presented here. The scheme takes into account
the effects of sonic points and thus satisfies entropy constraints. It is built upon the
knowledge that there are a finite number of jumps to states, which can be determined
by the characteristic decomposition (Riemann invariants) of the problem. Given these
jumps, a well-defined path of integration can be defined for a system.

The form for the tluxes [104] is

o = [ (u.) - /v. max (a(s),0) ds + /“' mina(s),0dr, (B.17)

where u. is a reference state aud a(s) is the characteristic speed as a function of
position in phase space. It is generally wise to choose u. to be one of the states at
the cell edge. Using the definitions of the characteristic decomposition used for Roe’s
solver, the fluxes for a system can be written

LO ([
F:0 = F(U)) + (
=FU+ L (]

In this form, the functions to the right of F(U;) only have to be evaluated if the
sign of Ay becomes negative (indicating a change of direction in the upwinding).
This change can happen during any of the jumps defined by the Riemann invariants.
Because the eigenvalues of the Lagrangian flow equations do not contain sonic points,
the effects of this solver are not profound when compared to Roe’s Riemann solver).
For all intents and purposes, the results obtained with this solver are nearly identical
to those obtained with Roe's solver. The integration procedure adds some additional
numerical dissipation to the solver not found with Roe’s soiver.

A

min (A*,0) da) k. (B.18)

B.3.10 Flux Splitting

The third approximate Riemann solver used is the process of flux splitting [125]). This
method has been widely used for the Euler equations. For the Euler equations, the
process of flux splitting has some difficulties because the characteristics can change
sign at sonic points (which motivated van Leer’s work [126] on flux splitting methods),

thus forecing the basis of the algorithm to take this behavior into acconnt. This also
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can create difficulty in meeting entropy requirements (also a problem for Roe's solver
for the Fuler equations). Part of the beauty of the Lagrangian equations is that each
characteristic does not change sign;. thus the scheme is the same for every grid point,
thereby reflecting the symmetry of the systemn that led to all the cancellation in the
final result of the section describing Roe’s method.

Upwind differencing in its most basic form is the basis of flux splitting. In general,
upwind differencing can be defined for a scalar advection law as follows:

W = A( ;%'-jf_%) Z A (/};’% _ - 1) , (B.19a)

I3

where

f* = max(f;,0) , and f~ = min{f.,0) . (B.19h)

This general concept can be extended to systems of equations by the type of decom-
position described in the previous section. Given the eigenvalues of the system that
define the direction of the flow for a set of characteristic variables, a flux splitting can
be defined. For this purpose, the eigenvalues are split as

A=A +AY, (B.19c¢)
and the flux Jacobian is split accordingly as
A= A" + AY, (B.12d)

with each matrix corresponding to the appropriate eigenvalue direction. These ma-
trices can be constructed under the condition that

F=AU; (B.19€)

thus,
F, =A"U,, and F} = A*U;. (B.19f)

To derive the flux splitting used here, I draw on an observation reported in [35] that
the flux splittings can be found through the right eigenvectors of the flux Jacobian.
Using the results of the previous section, the following equation set can be constructed

_ ; _ - B X i X
| ] | -u
M C + A2 0 + A3, -C =| p , (B.20a)
uC —p p/(v-1) —uC ~p up |



where

This equation set can be solved to yield the appropriate flux splitting.
The zesulting flux splitting is

(& - w)

Fj = Y (p - wC) (B.20h)
]
|4 (f’; - u,) (4 Cir = pr) |
and
( _?-12 (ﬁ: + Il‘)
Fy = %(m + u (') ' (B.20c)

i } (&‘: + ul) (wiCo + 1) )

where C}, is the Roe averaged sound speed. Close inspection of the above expressions
reveals that the energy flux in each case is similar to Roe’s solver in that F3 = —p,u..
Still closer inspection reveals that this flux splitting is in fact identical to Roe’s solver.

Remark 26 The use of the HLLE or LLF solvers promises to significantly ease the
implementation of Godunov type schemes with Riemann solvers. This is especially
true for compler systems of equations or for implicit algorithms. If mazimum and/or
minimum wavespeeds cannol be found, then by using an estimate plus (or minus) some
constent, which is large enough (this constant or estimate must be used in computing
stability limits), a physical solution can be found. The one problem of this approach is
that the solutions found with these approaches can be significantly mnore diffused than
Roe s algorithm (as shown in the follounng section).

B.4 Results

In this section, the results obtained through the use of the algorithms described above
is given and discussed. Several test problems taken from the literature are used: Sod’s
problem [41], Lax's problem [53], and a blast wave problem [44). In each case, only
the solution for density is given for brevity. This should not present too much of a
detriment because the density profile in each problem captures the essence of each
method’s strengths and weaknesses. For Lax's and Sod's problem, an exact solution
is used to provide and absolute comparison of the results. For the blast wave problem,
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no exact solution exists; thus, for an absolute comparison, a converged high-resolution
second-order solution is used.?

For brevity, the examination of the solution’s properties is done using the density
profile obtained. The density is an effective measure of algorithmic performance
because it contains all the pertinent structures in the one-dimensional flow (shocks,
rarefactions, and contact discontinuities).

B.4.1 Sod’s Problem

Figurc B.2a shows the solution obtained through the use of the naive Riemann solver
with Godunov's method. The most noticeable feature of this plot is the oscillations
behind the shock (X = 85). The shock is relatively sharp, but the contact discontinu-
ity is smeared severely. Less notable is the small osciilation ahead of the rarefaction
wave as well as what appears to be a small expansion shock in the rarefaction wave
(X = 30). These oscillations can be reduced significantly by reducing the time step
used in the calculations (which increases the inherent dissipation in the solution). In
general, the solution by this method is unsatisfactory.

In Figs. B.2b and B.2c the solutions found with Roe's and Engquist-Osher’s Rie-
mann solver are given. These solutions are nearly identical with Engquist-Osher’s
Riemann solver, but have slightly more smearing. The shock is about four cells wide
in both cases, but is slightly sharper with Roe’s method. The contact discontinuity
and the rarefaction wave are both smeared significantly, but the solution appears
to be physical throughout the domain for both methods. It should be noted that
Engquist-Osher’s Riemann solver is more expensive than Roe's Riemann solver

Figure B.2d shows the results for the HLLE Riemann solver and Fig. B.2e shows
those for the LLF Riemann solver. Both of these solutions show a great deal more
numerical diffusion in the rarefaction wave through the contact discontinuity. The
HLLE Riemann solver gives a crisp shock wave across approximately two cells. The
LLF Riemann solver shows about the same resolution of the shock as Roe's and
Engquist-Osher’s Riemann solvers. Another notable feature of these solvers is their
cost. Both are shmewhat cheaper than the more complex Riemann solvers like Roe’s
and the Engquist-Osher. As with the previous two solvers, the solution is physical in
nature.

B.4.2 Lax’s Problem

The naive Riemann solver again produces less than satisfactory results. The oscil-
lations behind the shock are present again, but large oscillations are also present
between the rarefaction and contact discontinuity. Again there is some semblance of

2This is a second-order Godunov method using Roe’s superbee [176] flux limiter to enhance the
resolution of contact discontinuities and high-resolution limiters for the genuinely nonlinear fields.
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Figure B.2: The solution for Sod’s shock tube problem at t = 20 is obtained with
each of the methods discussed in this appendix. The exact solution is denoted by the
solid line in each plot, and the solution obtained with Godunov’s method is shown by
the circles. Figure B.2a shows the solution obtained with the naive Riemann solver
followed by Roe’s Riemann solver (B.2b), Engquist-Osher’s Riemann solver (B.2c),
the HLLE Riemann solver (B.2d) and the LLF Riemann solver (B.2e).
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Figure B.2: continued

an cipausion shock in the rarefaction wave. Figure B.3a shows these results. The
negitive fcatures in the solution are gradrally removed from the flow as the CFL
numb. s reduced.

The Rue and the Engquist-Osher Riemann solvers again produce ncarly identical
solutions with the only difference being the slight increase in numerical dissipation
for Engquist-Osher’s Riemann solver. The shock is smeared to be quite wide as 1s the
contact d. -ontinuity. Figuses B.3b and B.3c show that in both cases the rarefaction
is smeared. In addition, both solutions slightly clip the square peak in the density
profile.

Figures B.3d and B.3e show the HLLE and LLF Riewmnann solvers respectively.
As before, the shock is crisper with the HLLE Riemann solver than either the Roe
or Engquist-Osher Riemann solvers, but the clipping of the densit: peak is more
pronounced and the smearing in both the rarefaction wave and contact discontinuity
is more severe. The LLF Riemann solver shows the same characteristics, but does
not have a crisper shock wave, and the smearing is more severe than that found with
the HLLE Riemann solver.

B.4.3 Blast Wave Problem

Figure B.4a shows the results using the naive Riemann solver. The smooth portion
of the flow on the left is severely polluted with instabilities as is the shock wave at
X = 64. Other smaller oscillations can be seen past the shock at X =~ ®5 and next
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Figure B.3: The solution for Lax’s shock tube problem at t = 15 is obtained with
each of the methods discussed in this appendix. The exact solution is denoted by the
solid line in each plot, and the solution obtained with Godunov’s method is shown
by the circles. Figure B.3a shows the solution obtained with the naive Riemann solve
followed by Roe’s Riemann solver (B.3b), Engquist-Osher’s Riemann solver (B.3c),
the HLLE Riemann solver (B.3d), and the LLF Riemann solver(B.3e).
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to the right wall. Although the solution captures some of the essence of the flow, the
characteristics of this solution do not indicate that this procedure is robust. Reducing
the CFL as before improves the =zsults; however, the immprovement is not as quick as
with the simpler shock tube- type problems.

Figures B.4b and B.4c show the results obtained with the Roe and Engquist-
Osher Riemann solvers. As before, these are nearly identical, but Engquist-Osher'’s
Riemann solver degrades the solution peaks slightly more than Roe’s. In gencral,
all features of the solution are smeared considerably by the solution procedure. The
contact discontinuities at X = 60 and X = 80 are both smeared considerably with
the first one being totally obscured. The “dip” between the peaks associated with a
rarefaction wave is filled i1 to a large degree.

The results obtained with the HLLE and LLF Riemann solvers are even more
diffusive as one might expect. The peaks are clipped to a larger degree and the
“dip” between them is filled in to a greater degree. Again the LLF Riemann solver
exhibits more dissipation than the HLLE soiver, although their performance is nearly
indistinguishable. The HLLE Riemann solver also produces a slightly sharper shock
at X = 88 than the other methods (except the naive Riemann solver), although this
result is barely perceptible from the figures (Figs. B.4d and B.4c).
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Figure B.4: The «.lutions to the blast wave problen. st t = 3.5/ are shown. The
converged nume:ical solution is shown by the dashed line and the solid line shows
the solution obtaiued with the approximate Riemann solvers in ¢ njuaction with
a first-order G dunov method. Figure B.4a shows the solution nt.uned with the
naive Riemaun solve followed by Roe’s Riemans: solver (B.4b), -he | ngquist-Osher's
Riemann solver (B.4¢), the HLLE Riema:.n solver (B.44), and the LLI Riemanrn
solver(B.4¢

274



6t

51

©

d

St

Figure B.4: continued

-t



()
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B.5 Concluding Remarks

This appendix has given the forin of various approximate Riemann solvers that may be
useful in producing quality results with Godunov's method in Lagrangian coordinates
with or without an Eulerian remap. In addition, the results show some of the problems
with taking the naive Riemann solver approach. The three test problems show that
the other types of Riemann solvers produc: physical results (and importantly at a
lower cost than “exact” Riemann solvers).

The Roe and Engquist-Osher Riemann solvers both employ a great deal of knowl-
edge of the wave structure of the cquation set and as such produce relatively good
results. If the wave structure is not as well defined or known, the HLLE and LLF Rie-
mann solvers provide a simple alternative provided good estimates of the wavespeeds
present are available. The latter two solvers also are less computationally intensive
and generally simpler, and thus offer some saving in that regard.

With the use of bigher order “monotonc” interpolation principles with the methods
given in this appendix, the results for all methods improve.

The extension of high-order methods to systems of equations is explored in the
following appendix.



Appendix C.
Exteunsion of High Resolution Schemes to
Systems of Conservation Laws

C.1 Introduction

In recent years, there has been an abundance of work deriving Ligh-resolution schemes
for hypurbolic conservation laws. Most of the development is made with scalar equa-
tions and generalized in some fashion to nonlinear equations or systems of equations.
T'vpically, the extensior to systems of equations takes on great importance as is the
case with the solution of the Luler equations of compressible flow. Much of the devel-
opment of high-resolution methods is devoted to the solution of systeins of equations
as their primary practical use.

This appendix is divided into five sections. The following section introduces the
methods used for a scalar wave cquation. In the third section, each of these methods
is extended to systems of equations. The fourth section presents and discusses results
found using these methods for the Euler equations. Finally, concluding remarks are
iound in the last section. An appendix describes the characteristic decomposition for
both conserved and primitive variables.

C.2 Preliminaries

In this appeudix, | concentrate my cflorts on one specific method and its extension
to systems of equations. This method is a standard second-order HOG methou aug-
mented with TVD limiters (Chapter 8 and [132]). As noted in [64, 147], the process of
solving a problem with a Godunov-type method can be divided into two basic steps:
reconstruction or projection and evolution. The evolution step involves the usc of
some sort of exact or approximate Riemann solvers (see for example Appendix B
or [30]). The issue at hand here is the method of projection for systems of equati-ns.

The projection step requires that a piecewise polynomial (or some fur, tior
resentation) be defined for each cell of the system to reconst. . U Lhe vaiiables dis-
tribution in space to some level of desired accuracy. In this appendix, the following
form is used for this polynomial

(z-12,)

A R A W et A E S Y (C".1a)
)
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whele

Au=Q(hr)A, yu, (C.1b)

with

(C.1¢c)

The mesh spacing is Az = Ty =,y = (:H% + r)_%) [2andr = A“;u/A,_;"-
The function Q (1,r) is a limiter.

The limiters used in this appendix are discussed in Chapter 8.

The polynomial is then used to define left and right states of the variables at cach
cell edge. u; and u,. These quantities are then used to determine a cell-edge numerical
tlux j,, via a Riemann solver. In the cases (excep: one as explained in Section (C.4.3)
considered in this appendix, Roe's aporoximate Riemann solver [63] is used. This

gives an overall conservative numerical scheme of

W =l =0 (fenn = frora) (C.2a)
with . | e
Sievar = 37[ S (u(2,0107)) dr . (C.2b)

For extension to systems not using a characteristic decomposition it is likely that
other approximate Riemann solvers will be used.

C.2.1 Lax-Wendroff-Type Differencing

Another issue easily addressed with simple model problems is time accuracy. For a
second-order accurate scheme spatially, it is often important to attain second-order
accuracy temporally. A common practice is to use a Lax-Wendroff approach to time
accuracy. From one point of view this reduces to characteristic tracing at the cell edges
to get a time-centercd estimate of the cell-edge state. For this numerical scheme this
yields the following form for cell edge states:

n l — .
u}:i‘ =u,+ EA,u(l =) (C.3a)
and . |
wred, = et = 38, (1 +m) (C.3b)
= g This can also be viewed as evaluating in the integral in (C.2b) by a
T .+ .15 comparison is shown in Fig. 4.8.

C.2.2 Two-Step Formulation

‘This procedure becomes more difficult when systems of equations are considered.
To combat this difficulty, a procedure in the spint of the twostep Lax-Wendroff
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scheme (114, 113], has been used [159, 158]. The left and right states are computed
from the projective polynomial and then used to produce time-centered estimates for
the cell-edge states. Given the cell-edge states, u" b and qu , computed with a
high-order method, the time-centered estimates are

u;::.l = “;ﬂ.t - % [/ (“;q.:) -f (“;’.*,,)] y (C.4a)
and "
Y e ) [f (“Lg,;) - f(";"+§.r)] : (C.4b)

This gives second-order temporal accuracy and is equivalent to the Lax-Wendroff type
procedure for scalar equations.

Remark 27 Davis [189] presents an alternate two-step method that is similar. In
that method, the first step is

=ul - ._( AT )_r') . (C.5a)
and a second step of
u+1,—u"4+ &, (C.5b)
and _
Upphe = “;:l + A)-H“ (C.5¢)

C.2.3 Component-Wise Extension

A third approach is also available. This approach involves the separate limiting of
the flux vector and the solution variable. It has been us. ¢ by [200] with a high-order
Lax-Friedrichs solver. This solver makes use of the identity, f = au, which implies
that

af  du \
‘a_.t = aa ' (("6)

which gives an equivalent form to that used above with a Lax-Wendroff approach.
Specifically this can be written

i =+ (Bu-od)) (C.T)
and " Lo _
“:4»}.' =hn =5 (A:+l" - "Ajnf) ' (C.7b)
where

——

AT =0Q1iNA 4 f (C.7c)



Similar to the approach taken with the interpolation of the dependent variables,
ro== _\”%f/.&)_y' and AJ_%f = [, — J,-1. Again for the scalar wave equation, this
is equivalent to the Lax-Wendroff type of time differencing,.

C.3 Method for Extension to Systems

This section concerns itself with the subject of extending the methods described in
the previous section to systems of equations. | deal with the specific case of the Euler
equations for the conservation of mass, momentum, and total energy.

The above systemn of equations can be written is a so-called primitive variable
form. It has been suggested that this system of variable should be used to determine
cell-edge states (234, 122]. In the above form the variables are conscerved quanti-
ties (p,m, E )T, but in the form given beiow the variables are (p, u.c)T, the density,
velocity, and internal energy. This follows the description of Roe's solver given in
Appendix B. This set of equations is

?)_:f + % =0, (C.8a)
o pulty %3—2 -0, (C.8b)

and

—+u—~+-—-=0. C.
0!+"(').t+p(')z 0 (€8¢)

The equations in primitive form give a nuch simpler system than the Euler equa-
tions. The flux Jacobian is

u p 0
A= 51:17-_11 u y—11. (C.9a)

2
0 ] u J

Again, the cigenvalues of this matrix are
(A 00%) = (u-cuute). (C.9b)

The right eigenvectors form a matrix

1 l 1
R= (r',rz,r:') = —% 0 % , (C.9¢)
L P (-1 /1:’



and by using
n=(v-1)0",

and
= 2‘"’ ’

the left eigenvectors form a matrix

.- - I .
" 5 k5
-1 - 22
R'=|p|= _'7_LT— o -], (C.9d)
3 | z
L’ 4 L 2; fc :.%

Of the methods available for extending the scheme outlined in the previous section,
the characteristic decomposition due to Roe [53] is the most common. In this method,
a similarity transform takes the variable from the conservative form to a characteristic
form. Each variable can then be computed at the cell edges from its characteristic
contributions. This methodology can also be applied to the primitive variables in a
similar manner. The basic theory of Roe's method is given in Appendix B.

Thus, each characteristic is limited separately in defining the new cell-edge value
of U. For this purpose, I define

3
Au=Y rAa, (C.10)
k=i
where
A0=Q(1,1)8, sa (C.11)

for each component of U where r = A,,;a/A,_;a.

The characteristic approach must also be integrated into the attainment of tem-
poral accuracy. Each wave in the above Jecomposition travels at different speeds and
they can also travel in different directions. For this reason, the cell-edge quantities
are computed from the following formulas:

3 ————
Ujspu=U; + % Yt (1-9*) 4", (C.12a)
k=)
and ,
l -~ &
Upsgo = Ui =3 27" (1+7*)ana, (C.12b)
km)

here n* = A*o. Colella [234) reports a more robust characteritic decomposition that
is described and tested in Appendix D.

This method is aesthetically pleasing because the coupled nonlinear system is
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locally reduced to a set of decoupled scalar equations.  Because of this, the theory
developed and applied to simpler model problems carries over without interference
to systems. On the other hand, the expense associated with procedure (especially
when multidimensional or more complex systems are considered) makes them less
attractive than other alternatives. A modification of this method that is touted as
increasing the robustness of the reconstruction is given in [234]. This inethod takes
into account the direction of wave carrying information and only allows physically
meaningful reconstructions to occur.

The other options described in Scection (1.2 are somewhat more straightforward
to implement for systems of equations. The two-step method is simply applied in a

vector fashion, i.c.,

U::?.l = ;‘+}.1 - % [F( y+%.l) -F (U:_g_,)] ' (C.13a)
and el ,
ul =, -2 [F(U,y) -F(Us,y,)] - (C.13b)

Similarly the component-wise extension method can be extended by using limited
values of the flux function for each of a systemn’s equations. Thus, the method can be
written

n 1 , — — ‘
U)«:g.l =U, + -_2' (Alu - A)f) ' (C.14a)

and : _
U:::.r =U,n - 2 (A;H“ - A;«nf) . (C.14b)

For both of these methods, the computation of the cell-edge value could be done
in cither conservative, primitive, or characteristic variables. The advantage of the
two-step or the component-wise extension methods can only be obtained if the in-
terpolation is done in either the conservative or prinitive variables because of the
relative simplicity of each formulation.

Another issue of some importance is the application of limiters in computing
the piecewise polynomials. It is common practice to use a compressive limiter such
as superbee on the field that produces the contact discontinuity. The compression
given by the limiter maintains the sharpness of the interface. The same limiter when
applied to shocks or rarefactions can produce entropy violating solutions. For the
characteristic decomposition the implementation of this is quite clear. For other
methods not involving characteristic decomposition it is usual practice to apply the
compressive limiter to the computation of the density profile [122].
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Table C.1: Abbreviations for the methods used in this study.

Scheme Abbreviation
Characteristic-conservative variables CC
Characteristic-primitive variables PC
Two-Step-conservative variables CR
Two-Step-primitive variables PR
Component-wise-conservative variables CF
Component-wise-primitive variables PF |

C.4 Comparison of Methods

In the following section, | compare the performance of the methods for several stan-
dard test problems for tne Euler equations in one space dimension. The results of this
discussion should provide guidance for more complex systems of equations as well as
guidance in a route to take in extending these methods to multidimensional problems.
Table C.1 list the abbreviations used in this section to describe the methods.

C.4.1 Sod’s Problem

The solutions to Sod’s problem can be seen in Figs. C.1-C.6. In general, the solutions
are quite good and exhibit the qualities one would expect with a high-resolution
numerical solution.

The solutions found with the CC method are seen in Fig. C.1. They are qualita-
tively quite good, with the only problem being the glitch in the velocity at the end
of the rarefaction wave. With the PC method the velocity glitch is gone, but a s1aall
rise is before to the shock. As can be seen in Fig. C.2, the der:sity profile is nearly
identical to that found with the CC method.

With the two-step formulation, the solutions are again quite good as can be seen
in Figs. C.3 and C.4. The major problems can be seen with the velocity profiles where
small problems exist with at the end of the rarefaction wave and in the post shock
region of the flow. These problems are not major in nature. Major features of the
flow field such as the shock, contact discontinuity and rarefaction wave are resoived
well.

The component-wise extension of the schemes has a few more problems. In
Figs. C.5 and C.6 the solutions are shown. The shock wave is cxceptionally sharp,
improved over the other methods, but in both the conservative and primitive variable
formulation there are a number of small oscillations in the velocity solution between
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Figure C.1: Sod’s problem computed with the characteristic formulation with con-
servative variables. In these figures, the solid line denotes the exact solution, whereas
the circles denote the approximate numerical solution.
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Figure C.2: Sod’s problem computed with the characteristic formulation with primi-
tive variables.

285



0 20 40 60 80 100

Figure C.3: Sod’s problem computed with the two-step formulation with conservative
variables.
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Figure C.4: Sod’s problem computed with the two-step formulation with primitive
variables. Note the small spikes at the end of the rarefaction waves and the post-shock
spike in the velocity solution.
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Table CC.2: The Ly error norms for each scheme wu Sod’s problem

Schieme | Density Veloo !
cC 5.86 x lO’;‘ 1.19 -n -1'0:—*
PO {490 x 1077 | 6.14 x 1073 |
CR 5.26 x 107" | 7.27 x in~?
PR 545410 % [ T58 x 107}
CF 534 x 10°2 | 9.33 £ 10~ ,
_E_": 6.20 x 103 [ i 22110:_&

the rar-taction and shock waves. In this case. these oscdlations are not desteuctive.
but detract fru.: the overall quality of the solution-

In Table C.2, the L, norm e¢sroes using these incthods et Siown. In these terms
the best solution is the PC' method with both of the two step methods of slightly
lower quaiity. The PF method is the worst, with the CC formsision slightly better.
However. the better qualitative appearance of the '(° makes 1t much superior o> the
PF method.

C.4.2 Lax’s Problem

The solutions to this problem by the methods discussed in this appendix are shown
in Figs. C.7-C.12. Again the solutions are quite good acress the board. But problems
v ith the methods show more strongly in the density profiles. The region hetween the
>huck wave and the contart discontinuity is sensitive to the limiter nsed, and 1n the
non charactesistic methods, problems show up.

Figures C.7 and C.8 show the CC and PC solutions to Lax's problesm. respectively.
‘The only problem with tiiese solutions is evident in the PC velocity solution where a
small dip in the velocity is present coincident with the contact discontinuity. ‘Fhis is
an artifact of the compresuive superbee limiter used on the linearly degenerate wave.

[Ma.es C.9-C.12 shovw the solutions found with other methods. These solutions
all «'.are common characteristics. The contact discontinuity causes oscillations in
the solutions as evident in both the density and velocity profiles. These oscillations
arc more scvere in the primitive variable formulations. These oscillations can be
controlled through another chouice of a limiter to apply to the density interpolation.

In terms of L; error (see Table C.3), the conclusions that are drawn are somewhat
different to those found with Sod's problemn. The velocity crrors are very close in
magnitude and no real conclusions can be drawn from thein. The density errors
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Figure C.5: Sod's problem computed with the component-wise formulation with con-
servative variables. Note the small oscillations in the velocity solution between the
rarefaction and shock waves.

289




1.2 + 1 8 +
(a)
1 ﬁ 1
081 1
) p 061 [
0471 ° 1
0.2 Ji' }
ol — —
0 20 40 60 80 100
X

0.2 + + +
0 20 40 60 80 100
X

Figure C.6: Sod’s problem computed with the component-wise formulation with prim-

itive variables. Note the small ascillations in the velocity solution between the rar-
efaction and shock waves.
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Figure C.7: Lax's problem computed with the chascteristic jors:wlation with con-
servative variables. With the exception of this solution, all the soluiions to Lax's
problem have small spikes or oscillations associated with the contact discontinuity.
This is indicative of the overcompressive nature of the limter placea on the density.

The conservative characteristic forinulation guards against this problem.
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Figure C.8: Lax's problem computed with the characteristic formulation with primi-
tive variables. Despite using a characteristic formulation, a small oscillation is present
with the contact discontinuity.
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Figure C.9: Lax’s problem computed with the two-step formulation with conservative
variables.
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Figure C.10: Lax's problem computed with the two-step formulation with primitive
variables.
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Figure C.11: Lax's problem computed with the component-wise formulation with
conservative variables.
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Figure C.12: Lax’s problem computed witk the component-wise formulation with
cor.servative variables.
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Table C.3: The L, error norms for each scheme on Lax's problem

Scheme Density Velocity
CC 1.46 x 10°? [ 1.€: x 107?
PC 1.92 x 10-7 | 1.42 x 10~2
CR 1.30 x 10-? | 1.53 x 10~2
PR 1.52 x 1072 | 1.61 x 10~2
CF 1.29 x 10~? | 1.54 x 102
PF 1.44 x 10~? [ 1.62 x 10~?

seem to favor the conservative tormulations, but for the two-step or cornponent-wise
formulations the differences are 1ot profound.

C.4.3 Vacuum Problem

As roted in Section C.2, one ruse in this study does not use Roe’s approximate
Riemann solver. The case of t.: vacuum problem considered below cannot use Roe's
solver as explained in [231]. i'or this case, a more difiusive scheme is used to maintain
physical solutions. This is the HLLE Riemann solver (30, 231, 128] (see Appendix B).

This method has several desirable properties: its simplicity, ease of implementa-
tion, and satisfaction of entropy inequalities. Reference [231) makes the suggestion
for the computation of 8], and ¥,. The formulas are

(C.152)

L 4
tr = MAX (Gr maz+ Bir,mer)

and

(C.15b)

! .
bl' = (al.mim alr.mm) '

where max and min refer to the maximum and minimum characteristic speeds at
the respective locations. The values for a;, come from the Roe linearization that is
discussed below.

The solutions found with the CC, PC, PR, and PF (Figs. C.13, C.14, C.16
and C.18) methods are not worth much discussion. All of them are quite good and
appear to be nearly identical in terms of resolution. Table C.4 shows this as well.

The solutions found with the CR and CF methoas do warrant some discussion.
The CR solution is shown in Fig. C.15 and the CF solution in Fig. C.17. Both
solutions are of exceedingly poor quality. in fact if measure had not been taken to
prevent this, the computer code should have blown up cariy in the solution process.
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Figure C.13: The vacuum problem computed with the characteristic formulation with
conservative variables.
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Figure C.14: The vacuum problem computed with the characteristic formulation with
primitive variables.
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(b)

Figure C.15: The vacuum problem computed with the two-step formulation with
conservative variables. The use of conservative variables with this flow is disastrous.
The total energy has become negative in the region around X = 50.
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Figure C.16: The vacuum problem computed with the two-step formulation with

primitive variables.
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Figure C.17: The vacuum problem computed with the component-wise formulation
with conservative variables. The conservative variables have not guaranteed that
positive definite quantiti=s (total energy) stay positive definite.



Figure C.18: The vazuum problem computed with the component-wise formulation
with conservative v:riables.
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Table C.4: The L, error norms for cach scheme on the Vacuum problem

Scheme Density Velocity
CcC 1.27 x 10-? | 2.63 x 10-2
PC 1.24 x 107 [ 2.85 x 107?
CR 2.72x10°? | 1.00 x 107!
PR 1.20 x 102 { 2.39 x 102
CF 2.81 x 10-? | 5.85 x 1073
PF 1.20 x 10~? | 2.40 x 10"_

This is because the total energy in the solutions becomes negative in the vicinity of the
vacuum in the solution. The use of the conscrvative variables in a non characteristic
method when the solution is kinetic cnergy rich causes Jhe problem. This is akin to
the problems with the Roe linearization siudied in [231]. The interpolation of the
variables creates nonphysical states in the total energy. Lowering the compression
of the limiters alleviates this problem as does moving to primitive or characteristic
variables for the interpolation.

C.4.4 Blast Wave Problemn

The solutions are in general all quite good. The major features of this complex flow
field are all depicted in the plotted density profiles (Figs. C.19-C.24). The major
differences can be seen in the resolution of the contact discontinuity at X = 60, the
“well” at X = 75, and the peak at X = 80.

In Fig. C.19, the CC method’s major problem is the clipping of the second peak
in -he solution. Other features are well resolved in comparison to the other methods.
The PC method (Fig. C.20) smears all the features of the flow considerably more
than the CC method. The CR method is generally like the CC method with the
exception of the contact. discontinuity at X = 60, which is smeared much more that
by the CC method. The solution is somewhat “noisier” with over/undershoots in
several locations. These characteristics are duplicated in large part by the CF method
(compare Figs. C.21 and C.23).

The PR and PF methods produce neasly same results. Both solutions are remark-
ably crisp and each feature in the flow field is sharply defined. Figures C.22 and C.24
also show the major detriment to these solution. The second peak (X = 80) sig-
nificantly overshoots the “exact” solution. Nevertheless the solution found by these
methods is quite good in all other respects.
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Figure C.19: The blast wave problem computed with the characteristic formulation
with conservative variables. The first peak is caplured very well, but the second is
clipped severely. With the blast wave solution, the “exact” solution is marked by the
dashed line and the approximate numerical solution by the solid line.
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Figure C.20: The blast wave problemn computed with the characteristic formulation
with primitive variables. Both peaks are clipped and the contact discontinuity at
X = 60 is smeared.
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Figure C.21: The blast wave problemn coinputed with the two-step formulation with
conscrvative variables. This is similar to Fig. C.19, but the contact discontinuity at
X =~ ) i< smeared significantly more.
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Figure C.22: The blast wave problz.n computed with the two-step formulation with
primitive variables. This solution is higbly resolved and is of high quality with the
exception of the overshoot of the second peak.
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Figure C.23: The blast wave problem computed with the component-wise formulation
with conservative variables. This solution is fairly well resolved, but is somewhat
“noisier” than other solutions.
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Table €.5: The times for the blast wave solution computation using ecach method

Scheme | Total Time (s) | Percentage in Reconstruction
| aim o

pc 79.41 49.55

CR N2.49 43.12

PR 72.04 42.57
' CF R4 22 40.44
 PF H 69.07 40.54

C.5 Concluding Remarks

Table €5 shows the total time taken for the blast wave solutic-~s an' the perce:itage
of that time taken by the reconstruction of the cell-edge values'. In terms of economy,
the PR and PF methads have clear advantages. Taking this into account with the
results i mind several conelusions can be drawn. These conclusions are summarized

below:
o All the methoas deseribed in the appendix produce quality results.

¢ When a non characteristic extension is used care 153t be taken in applying
limiters {to not over-compress the density).

o For non characteristic extensions, the primitive variables formulation should be

used.
e Non characteristic formulations using t* » primitive vatiables are lower in cost.

Another point not emphasised here has been extension *o multiple dimensional
problems. All of thes~ methods can he used with a dimensional splitting method, but
the two-step method has clear applicability to a purely multidimensional methods
without splitting. This is clearly »n advantageous feature. In sum, both of the
characteristic approaches (CC and PC) ate reliable and produce excellent results in
all cases. The two-step primitive variable method (PR) with appropriate selection of
limiters is both economical and has applicability to a multidimensional algorithm.

UThe timings were dune on a SPARL Station 2 runaing Sua0S 4.1 1h
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Figure C.24: The blast wave problem computed with the component-wise formulation
with conservative variables. This solution is very similar to Fig. C.22.
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Appendix D.
A More Robust Characteristic
Reconstruction

D.1 Methodology

In {34], Colella discusses a more robust means to accomplish characteristic recon-
struction. In this appendix, | show this method and explore its use.

Bricfly wtated, this is a modification of the methodology given carlier. For constant
coefficient problems these steps lead to identical values for U, shdier but as Colella
comments leads to a more robust algorithin in the case of highly nonlinear problems.
This method requires that we define left and right reference states, G’*i sand 0" b
respectively. These states are defined as

l.J"“ =U, + ;- (I - max (A:",O)) AU, (D.1a)
and . | _
Uy =V, -3 (1 - min (3},,.0)) 4, U. (D.1b)

Here, the cigenvalues, A%, have been arranged in incieasing order frem ... AK,

These reference states are then used in defining the cell-edge values as

- l . —
Uppa=Uypu + Enz.:or" (A:‘ - A:) Ajat (C.2a)
0>
and
R 1 -
U, = U, 45 X (Mar - X)) By0iat. (D.2b)
2 k:A8¢0

All the above terms where defined in Chapter C. One would expect this method
to be slightly more diffusive than the usual reconsiruction because of the lack of
extrapolation of the linear profile for eigenvalues that do not propagate toward the
eell edge.

D.2 Results

I compare the above described method with the more straight foiward algorithm used
throughout this research. To do this | use the same four test problemns described in
Chapter A. To simplify comparison on the density and velocity profiles are studied.
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For Sod’s problem, the more robust algorithms sole improvenient seems to he in
the velocity profile where the “bump” experienced with the usual algorithn uear the
end of the rarefaction wave has disappeared. This is shown in Fig. D.1. The L, error
for density is also slightly better.

With Lax’s problem, the difference is barely perceptible. Figure D.2 shows that
the two solutions are nearly identical. The L, error norm for density is slightly worse
for the robust reconstruction.

Again for the vacuum problem as with Lax’s problem, the two solu ions are not
greatly different, aithough the rcbust reconstruction appears to be more diffusive.
As Fig. D.3 shows, near the vacuum in the solution, the robust reconstruction shows
more artificial diffusion.

Figure D.4 shows the solutions for the two methods on the blast wave problem.
The solutions were ccmputed with 500 grid points. Only the region of wave interac-
tions is shown. Again, as shown in this figure, the solutions are very similar.

While the robust reconstruction does not have any detrimenta! effects on the
sclution (save a little artificial diffusion), except in the case of Sod's problem, it
does not improve the solution. It is also somewhat more expensive than the usual
reconstruction, although this cost is not particularly high.
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Figure D 1: The density and velocity solutions to Sod’s problem using both the usual
and robust reconstruction methods.
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Figure D.2: The density and velocity solutions to the vacuum problem using both

the usual and robust reconstruction methods.
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Figure D.3: The density and velocity solutions to the vacuum problem using both
the usual and robust reconstruction methods.
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Figure D.4: The density and velocity solutions to the blast wave problem using both
the usual and robust reconst ‘1ction methods.
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Appendix E.
Neo-Classical Upwind Type Methods

Here | briefly explore the types of solutions that arise from the solution of modified
Qux and symmetric TVD schemes without limiters. The schemes can be derived
from those schemes by considering what the fluxes would be for the various sample
gradients used in the limiters. This gives three separate schemes for the modified
flux type of method: upwind, antiupwind and centered (or average of the other two).
For the symmetric method, four schemes arise: upwind (Beamm Warming). centered
(Lax-Wendroff ), antiupwind and average.

The results for these methods on the scalar advection of a square wave for 100
time steps at v = 0.5 can be seen in Figs. E.1 and F.2. Each of the solutions is
sccond-order accurate and shows distinct dispersive effects. For the modified flux
type of scheme, the upwind and antiupwind ersces are opposite in orientation and the
centered solution is superior. For the symnmetric scheme, surprisingly, the antiupwind
method followed by the average method seem to be superior in terms of oscillation

control.
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Figure E.1: The solutions for the neo-classical modified flux upwind schemes on the
scalar advection of a square wave (a = 1 and v = 0.5).
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Figure E.2: The solutions for the neo-classical symmetric upwind schemes on the
scalar advection of a squase wave (a = | and v = 0.5).
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Appendix F.
Extension of High Resolution Schemes to
Multiple Dimensions

F.1 Introduction

Methods for numerically integrating conservation laws are best understood in one
dimension. Berause of this, schemes are most often developed and thorousghly tested
in one dimension. High-resolution schemes are no exception te this rule. In some
cases, a good one-dimensional method rannot be generalized to multiple dimensions
because of assumptions made in their derivation. Fortunately, this is not always true,
although the one-dimensional methods are always somewhat limited when used in
multiple-space dimensions.

The more straightforward methods for the multidimensional advection algorithms
ate developed in physically or logically rectangular coordinates. Finite element meth-
ods and more general finite volume methods [35, 36] can he defined for more gen-
cral geometries. The problem with these methods is that the theoretical support
in multidimensions is somewhat lacking. A perfect example of this difficulty is
with Ricmann solvers. Multidimmensional Ricmann solvers are an active topic of re-
search {228, 235, 236, 237, 229]. but in one ditnension, Riemann solvers are well devel-
oped. Typically, Ricmann solvers are used in ain operator splitting fashion [156] where
at cach cell interface the multiditnensional problem is reduced to o one-dimensional
problem. These are then picced together to give a multidimensional algorithm [234).
As is discussed shortly, the advent of multidimensional Riemann solvers do not cure
all the problems assoriated with the solution of multidisnensional problems with high-
resolution upwind methods.

A common approach to achieving high-resolution methods is the use of flux or
slope limiters. For one space dimension, limiters are well developed. but for more
than onc dimension, their development is somewhat less. One aspect to multidi-
mensional limiters is that they require the use of more 2ample gradients than their
one-dimensional counterparts. As discussed in Chapter 8, the more arguments given
to a limiter, the lower its resolution simply because of the minimum principle used.
Multidimensional limiters hav~ been given by [238, 139, 239].

In this appendix, ] attesnpt to see what some of these limitations arc and what
methodology is best suited to the task. The appendix is organized into nine sections:
an introduction, a description of the first-order methods, the test problems, and

the finst order gesalts. This s followed by a deseription of the basic high-resolution
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method and its extension to multiple dimensions. After this, the results of the high-
resolution methods in two space dimensions is given. Following that discussion is a
brief description of the impact of limiter selection on the resuits. Finally, some closing

remarks are made.

F.2 First-Order Methods in Multiple Spatial Di-
mensions

In this appendix | am interested in solving the following equation,

du  9f(u)  0Og(u) _
E-i' 9z + 3y =0, (F.1)

where [ (u) = au and g (u) = bu. A conservative differencing of this equation is

nel

“w = ll:) — Oy (jsf’,);h - ]n-’.);l') -0y (9.,)0,;“ - gn.;-*;.l) . ‘F'z)

where 0, = At/Az and o, = At/Ay.

In each of the methods discussed in this appendix, the cell-edge flux at cell edge
'+ %, ] ate defined by the following approximate Riemann solver for scalar wave
equations

1
,"*J“' = § [a (u“f-)‘-' 0 “60}.)';') = lal (“u}.,‘;' - “.‘9;4;1)] ' (F.3)

where a is the velocity in the z-direction at the cell edge and the subscript ! refers
to the value to the loft of the cell edge, r to the right and Ir is the interface value.
Similarly, the flux is the y-direction at cell edge i,j + L is

90.;0’-.“ = % [b (ul.yr}» + ul.)";l) ol (uuol;l - uu.)#‘;l)] ' (F'4)

where b i3 the velocity in the y-direction at the cell edge and the subscript b refers to
the value at the bottom of the cell edge, ¢ to the top, and bt is the interface value.
By defining the cell-edge values, | then define the scheme.

For the first-order schemes, the value at the cell edges are given by the value of
the variable in each cell for instance

Uip dou ™ Yij » (F.5a)

and
Uiphur = Bisty s (F.5b)

and other cell-edge values defined in a similar fashion. The simplest scheme is then
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from the conservation form, (F.2).

Another common form uses dunensional splitting {156] usually implemented with
Strang splitting [240. 241}. This method picces together one-dimensional solutions

into a multidimensional solution. For two dimensions, | can order the solution in two

ways as either

u:'_)“ =C,C, (“:)) , (F.6a)
or
upy' = L,C, (u7,) . (F.6b)
Here the operator £, L, (u,,) would be carried out in two steps, the first being
u, =L, (ur,) . (F.7a)
and the second being
=L, (u,',) . (F.7Tb)

with £, C, (u:)) defined in a similar manner. The function £, (u,’_)) is defined as
C‘ (u".,) = u".) -— 0' (Il:}d'.” — /.f_’.);") ’ (F-s.)

and £, (u,’_,

) is defined as

C, (u:)) = u,, -0, (g:”l;“ - g:)_};“) . (F.8b)

Strang [240] showed that if the order of evaluation is alternated, errors cancel to
second-order in time (also see LeVeque [40, Chapter 18]) thus the implemented order
of evaluation for two time steps is

upt? = £,L,L,L, (u,) - (F.9)

The use >f this with Godunov's method defines the split Godunov method.!

Colella defines a third choice for multidimensional extensions of one-dim~nsional
methods. He calls these corner transported upwind (CTU) methods, a term | use
hese. The basic geometric idea is shown in Fig. F.1. This is a two-step method that
defines time-centered values for the cell edges and uses these o compute the advance
time cell-centered values. The first step of the method computes a time- centered
value for a cell edge based on the characteristics traced from the corners of that cell

}The use of Strang sphtting is nt tic-cesary with first-order methods, but is really needed for
v b opder anethods
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Figure F.1: A diagram showing the trace of characteristics back from the cell corner
of cell (2, j) with both velocities being positive

edge. For the z-direction cell edge, this gives

n [+ ] n n

'++ fd-‘ Ui ?” (9:'.:+§;u = 9.;,-;.;“) ' (F.10a)
and for the y-direction cell edge

a+1 ,‘ [

U a =W = 5 (Mgyw = flpgr) - (F.10b)

The fluxes are computed hv some means, in this caze a Godunov flux as described

i€ [uxes are RIS MY W Wi sanwAmiiuy B

above. The final time-advanced solution is computed from

A+l _ n+} n+} . nt+d ned
wl =y - "‘( +£-,,.:r - .'-{,.,';b_) — Ty (g-'.ﬂg;bt ‘9.-.,-5;4») J (F.10¢)
which uses the CTU-time-centered values to define the Godunov fluxes.

Before continuing, some comments concerning stability should be made. Classical

stability analysis applies to the above schemes. For the split and CTU Godunov

schemes the stability limit 1s
max (vz. 1) <1, (F.11a)

v+, <, (F.11b})
where v, = |a| o, and v, = |bjo,.
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I'.3 Test Cases and Problem Setup

lu this appendix, | consider three test problems as initial conditions to the multidi-
mensional scalar wave equation. The equation | solve is

Qu,  laly)u) dbs)u) _

N O Ty 0 (F.12a)
where
a(y) = -wiy—y), (F.12b)
and
b(z) =w(s-17,). (F.12c)

with o = 0.1, r, = 50 and y, = 50. At t = 20x thc field has rotated once. The
overall domain is [1,,72] % {y,.ya] = [0.100] x [0,100]. This problemn setup follows
Zalesak [62] and Munz [181]. | use a time step size of 20x /628 so that the profile
revolves once in 6238 time steps.

The first problem is defined by Smolarkiewicz [242] as the cone problem. The
initial conditions and exact solution are shown in Fig. F.2. The cone iz centered at
(50. 75) with a height of unity and a radius of 15. This problem should show how the
solutions mantain local extrema and shape during advection. For the cone and the
slotted eyhinder problems. the figures are only shown a 59 x 50 portion of the grid in
otder to concentrate on the solution.

The second problem is the slotted cylinder problem introduced by Zalesak in [62).
This problem has been used by a numbes of rescarchers [181, 93, 242] to test multidi-
mensional advection schemes The eyvlinder 1s centered at (50, 75) and has a height of
unity and a radins of 15. A slot is cut out of the cylinder at its lower center leaving
a “bridge™ with a maximum width of 5. This problem highlights the performance of
the methods on contact discontinuities showing their numerical diffusion. Figure F.3
shows the initial condition for the alotted cylinder.

F.4 First Order-Results

In this section | discuss the results of using the first-order methods on the rotating
cone and slotted cylinder problems after one rotation. In general, the solutions all
have similar properties and results. Graphically speaking, the solutions are nearly
identical. This is shown by looking at Figs. F.4, F.6, and F.8 for the cone problem and
Figs. F.5, F.7. and F.9 for the slotted cylindes. All these solutions show exceedingly
poor tesolution of the solution and the original profile is nearly indistinguishable.
The results for all the methods discussed in this appendix are given in several
tables. Table F.1 shows the computer time used in producing each solution. It
is notable that the CTU.Godunov method uses half again as much titne as the split
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Figure F.2: Initial condition and exact solution after n rotations for the cone problem.

The spike in the upper right hand corner of the upper figure is set equal to | and the
spike in the lower left hand corner equal :o - ).
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Figure F.3: Initial condition and exact solution after n rotations for the slotted
cylinder problem.
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The split Godunov method solution for the rotating cone shows the

diffusion of this method.

excessive

Figure F.4

325



The split Godunov method solution for the rotating slotted cylinder

shows the excessive diffusion of this mcthod.

Figure F.5
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for the rotating coune shows the

The unsplit Godunov method solut

diffusion of this method.

excessive

Figuse F.6
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The unsplit Godunov method solution for the rotating slotted cylinder

shows the excessive diffusion of this method.

Figure F.7
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The CTU-Godunov :nethod solution for the rotating cone shows the

Figure F.8

diffusion of this method.

excessive
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Figure F.9. The CTU-Godunov method solution for the rotating slotted cylinder

shows the excessive diffusion of this method.
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Table F.1: Computer time used for the solution of a problem using each method
through six rotations (CFT 1.14 on a Cray X-MP4/16 with a CTSS operating system).

Scheme CPU Time (s) | Total Time (s)
Split Godunov 27.975 41.2_!72
Unsplit Godunov 27.640 40.905
CTU Godunov 42.455 60.256
Lax-Wendroff 39.043 55.54%
Split HOG 49.913 71.684
Unsplit HOG 48.943 70.346
CTU HOG/Godunov 73.487 '34.891
CTU HOG 63.542 124.737
Runge-Kutta HOG 70.885 101.848
Hancock-van Leer HOG 58.656 117.215

Godunov mett ad to achieve nearly the same result. The times for the split and unsplit
Godunov so'uations are nearly equal. Table F.2 gives the solution minimums and
maximums for all methods after one rotasion of the cone. The split Godunov solution
is slightly better than the other sclutions, and all three methods are monotonic.
Table F.3 shows that the slotted cylinder results yield similar conclusions.

F.5 High-Fesolution Methods

This section explores raethads used to improve the above results while staying within
the basis of one-di-nersional methods as a dasic building block. Below 1 show the
basic scheme used in the study and introduce the methods of extension to multiple
dimensions.

F.5.1 The Basic One-Dimensional High-Resolution Method

To set the high-order Godunov (HOG) inethods tested in this appendix on equal
footing, all methods use the same basic oni-dimensional method as a basis. This
method is a simple second-order method defined by the following piecewise polynomial
function in the r-direction

b Sl 4

Poy(z)=mn,,+ .&._u M (F.13a)

z
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Table F.2: Minimum and maxisnum values after one rotation of the cone using all
the methods.

— _ ——

Scheme Minimum | Maximum
Split Godunov 0.0000 0.3300 -
‘ Unspht Godunov 0.0000 0.3247
CTU Godunov 0.0000 0.5299
Lax-Wendroff -0.7970 0.8436
Split HOG 0.0000 0.8601
Unsplit HOG 0.0000 0.8638
CTU ROG/Godunoy -0.0120 0.8575
CTU HOG -0.0190 0.8589
Runge-Kutta HOG 0.0000 0.8697
Hancock-van Leer HOG | -6.0062 0.8529

Table F.3: Minimum and maximum values after one rotation of the slotted cylindes
using all the methods.

Scheme Minimum | Maximum
Split Godunov 0.0000 0.5883
Unsplit Godunov 0.0000 0.5794
CTU Godunov 0.0000 0.5882
Lax-Wendsoff -0.7945 1.2627
Split HOG 0.0000 0.5993
Unsplit HOG -0.0005 0.9996
CTU HOG/Godunov -0.0555 1.0625
CTU HOG -0.0585 1.0736
Runge-Kutta HOG 0.0000 0.9999
Hancock-van Leer HOG | -0.0332 0.9985
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and in the y-direction
y y. )

t)\y)—u0)+Au Ay

(F.13b)

The terms A,u and Sfu are defined by limiters (see Chapter 8).

From the above methods | may get s~cond-order time accuracy by defining the
time-centered, cell-edge values as

:::.,l—“:z"'%“"h)&"l. (FMa)
and , _
wrd, =y -3 () B, (F.14b)

where 7, = aAt/Az. The terms 7, and 1, are signed versions of v, and v,. Similar
definitions are used for the cell cdges in the y-dircction.

Now | explore how | extend these one-dimensional methods to two space dimen-
sions.

F.5.2 High-Resolution Methods in Multiple Spatial Dimen-
sions

The first three ways to extend schemes to multiple spatia! dimensions are simply
extensions of the methods used for the first-order Godunov schemes. The operatar
split aud unsplit methods are extremely straightforward, but the CTU scheme is
worth =xploriag.

To get second-order accuracy | use a Taylor expansion for each time-centered

cell-edge value

N Atdu  Azdu
Tt TR Ta (F.15a)

and
wris = i+ A“;“‘ + & 3',' (F.15b)

| can replace Ju/dt with —~3f/3z — 3g/dy in a manner similar to the derivation of
the Lax-Wendroff method. This gives

R AN
w}.;,l Uiy = (83 + 9z + 2 9z ' (F.16a)
and 3f 89\ Ayou

nl _ a g Ay ou

k=, - ( L4 83)4» 25 (F.16b)

{ use these expressions later in developing another method. Remembesing that f = au
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and g = bu, then gathering like terins reanlts in

ne} ¢ du Ny .

Mgt = :)+§(AJ—3141);'—I---§-‘7'—’;. (F.17a)
and

nel du  Ndf .

"l.J*%;lt: (Ay—A th) 3;" —é'"_); . ("llb)

Evaluated numerically the above expressions beeome

'o’l A u g " . ‘

W= —(A: = Ma) 3o = S im = g - (F.18a)
anhd

" . Au o, " .

'.‘}“ =ul, + 5 (3y - Ath) .3,;, - ,—z-( NV ,,,,) : (F.18b)

The original CTE method presented above used the last terms in cach of the last two
expressions in defining the time-centered cell-edge values used in (F.10c). Applying
the HOG polynamial reconstiuction given in the previons section provides values for
the new tesms in the expansions. Two separate methods arise from this derivation:
I get second-order aceurary with Godunov fluxes being used as with the first-ordes
CT method or | may use second-order hixes in the place of the first- order fluxes.
The first of these two methods 1 eall the CT1U HOG/Goduse.. :20%=:: and the second
CTU/HOG.

In [159. 158]. an altesnat: method for extending HOG methods to second-order
tine accuracy was presented.  This method was developed in one dimension and
i similar in flavor to the two-step Lax-Wendroff method. Using the above stated
derivation | can extend this method o two (or more) dimensions. | substitute nu-
imerical approximations directly into (F.16a) and (F.16b). This gives expressions for
the time-centered cell-edge values of

T 12- (/.".;.,.. -1"_*,,,,) - ( vosys = -ya) « (F.192)

&
>
(V)

l

T = (Soepsi =Ty sn) - 5 >l =104a) « (Fa9b)

Bo,e1a = u'l ¢ - = (/wy.).l /.- bo ') - —( wels ~ :)-;_,) ' (F.19¢)

>

*

L
I

aned
. '-0; - 0, . a' { \ .
.l.,,-}.l'_ u }l ( ug;l [.-},,;v) "'2—\]:1’}.‘—/:)_;.,) . (’lgd)
Thew estimates diffor from previons schemes by ant tequiring Riemann solvers, Then
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(F.10c) is used to update the grid values. This is referred to as the Hancock-van Leer
HOG method. Unlike the CTU schemes, the (!FL limit for this scheme is given by

Vs + 1, < 1|

This is because cell-to-cell interactions are ignored in the predictor step.

The next method I study here is a TVD Runge-Kutta method introduced by
Shu [169, 65, 66]. These methods were shown to be TVD when the coefficients of the
time discretization meet certain conditions. These multistage algorithms are written
in the following form

—1
u' = Z [or,-ku" + ﬁu AtL (u")] ’ (F.20a)
k=0
where the semi-discrete differential operator i« defined by
Ou
Et_:“u' . (F.20b)

and a; and 8;; are coefficients. The criteria for this to produce TVD results given
an appropriate spatial operator is a CFL condition

12 N
, < Sk F.20c
“ S 1Bl (F-20c)
where

4+ <
P vy &

b

If B is negative, the spatial operator must be antiupwind [65, 160]. A number of
schemes can be defined with the second- and third-order methods being particularly
useful. The second-order method turns out to be the classic modified Euler or Heun

scheme

u,!J =u;, + Al (u”) , (F.21a)
and
urtl = + 923 [Lem+L(v')], (F.21b)

with a CFL condition of v < |. It is notable that Riemann solvers are needed at each
step of the multistep integration.

For convenience, the CFL limits for the schemes studied in this appendix are given
in Table F.4

F.6 Results for the Second-Order Methods

This section shows and discusses solutions to the test problems by the second-order
methods described above. Before continuing to this, | show the results that a classic
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Table F.4: CFL limits for all the method

Scheme Limit
Spit Godunov mas (v, 1,) < |
Unsplit Godunov v, + 1, <1
Tl Godunov max (v,,v,) < |
Lax-Wendroft max (v, 1) < |
Sp'it HOG max (v,,»,) < 1
Unsplit HOG ve +v, <1

TV HOG/Godunoy max (#,,1,) <}
e i max (v,.1,) < |

Runge-Kutta HOG v, + v, < |

Hancock-van Leer HOG v, +v, <1

second-order method produces. Figures F 10 and F.11 show the operator split Lax-
Wendroff solutions to the test problems. Both of th 'se solutions are unacceptable.
The large crror near the lower houndary is the consequence of boundary conditions.
‘The boundaries are set to a symmetrical condition which does not damp out errors at
the boundary. Eventually, the solution undergoes boundless growth becanse of this.
If the solutions are set to zero at the boundary (errors flow out of the domain), the
solutions remain bounded. Therefore. the houndary conditions used here represent a
worse case analogous to reflective Loundary conditions in fluid flow simulation:

Table F.1 shows the economy of cach scheme. All are mote expensive than the
Lax-WendroT method, with the split and unsplit HOG methods being the least ex-
pensive followed by the Runge:Kutta HOG inethod. The CTU and Hancock-van Leer
methods are all very expensive. The bulk of this expense seems to be related to mem:
oty aceess titne, which favors the Runge-Kutta type method. In terms of cconomy,
the mere classical <plit method appears to he the winnes.

In =i} the HOG-type aiethods shown here, the superbee limiter is used to give the
laghest resolition pussible. Other limiters are briefly discussed later in the appendix.
The aplit HOG method gives excellent results in teems of resolution and solution
symmetry (ser: Fig. F.12). The bridge in the slotted cylinag..r is only slightly eroded
as shown by Fig. F.13.

The unsplit HOG method gives poor results in tesins of solution symmetry and
resolution as shown in Figs. F .14 and F.15. The problein with the unsphit snethod is



Figure F.10: The Lax-Wendroff method solution for the rotating cone shows the
excessive dispersion errors of this method.
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Figure F.}1: The Lax-Wendrofl method solution for the rotating slotted cylinder
shows the excessive dispersion crrors of this inethod.
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Figure F.12: The split HOG method solution for the rotating cone shows the high
quality of this raethod.
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Figure ¥.13: The split HOG mecthod solutioa for the rotating slotted cylinder shows
th- Lire quatity of thic rr<thed



Table F.5: Minimum and maximum values after une rotation of the cone for various
limiters usinyg the Rungz-Kutta HOG method.

Limiter Minimum | Maximum
Minmod 0.0000 0.6703
van Leer 0.0000 0.7754
Central 0.0000 0.8154
Superbee 0.0000 0.8697
Generalized Average n=2| -0.0277 0.8439

that the cross derivative terms (2u/dx0y) ate ignored. This problem has been noted
by Sinolarkiewicz {242].

The solutions computed with the CTU Godunov/HOG and CTU HOG methods
do not share this problem. Both methods have excellent symmetry qualities as shown
by Figs. F.16 and F.18. The resolution is also quite high as can be seen in Figs. F.17
ard F.19. These figures also show that the solutions are not monotone and also
produce a great deal of high frequency but low amplitude noise. The solutions do not
differ greatly as evidenced by the figures and the data in Tables F.2 and F.3, but the
CTU BOG method is slightly noisier and less monotonic.

The Hancock-van Leer HOG meth-d has many of the same characteristics as the
CTU algorithm, but the oscillatiors are smaller and the actual resolution is improved.
These two features are evident in Figs. F.20 and F.21. This method produces the
best reproduction of the “bridge” in the slotted cylinder problem.

The Runge-Kutta HOG method improves on all these methods. As Figs. F.22
and F.23 demonstrate, the problems with the above methods are cured. The solutions
is of slightly better quality than the split HOG method.

F.7 Test of Various Limiters

This section briefly discusses the performance of the HOG methods for different
choices of flux limiters. Tables .5 and F.6 show the minimum and maximum values
for cach of the limiter for the test problems. In all cases, the Runge-Kutta HOG
method is used.

The figures that follow show that the choice of limites can have a profound influ-
ence on the quality of the solution. The minmaod limiter provides the lowest resolution
second-order solution as is shown by Figs. F.24 and F.25. The van Leer and center
limiters ase somewhat better in resolution, but are still noticeably less resolved than
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Figure F.14: The unsplit HOG method solution for the rotating cone shows the lack
of symmetry of this method.

342



’//'-._:-_ .
.. //// e
/ 'r,,,;—-.'-:.-._‘-; vy / //,,'I‘-,'_ R
RO X
W ,
' ' Iy ’ i
) | PORLLA 1
. iy .
‘ .
! \ | "
i # .
; Wi -
. f y “' 1
. ﬁ S ,,/ , /1. .
)
o o YRRl

A%

Figure F.15: The unsplit HOG method solution for the rotating slotted cylinder shows
the lack of resolution of this method.
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Figure F.16: The CTU Godunov/HOG method solution for the rotating cone shows
the resolution and noise of this method.



Figure F.17: The CTU Godunov/HOG methad solution for the rotating slotted cylin-
der shows the resolution and noise of this method.
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Figure F.18: The CTU HOG method solution for the rotating cone shows tie reso-
lution and noise of this method.
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Figure F.19: The CTU HOG method solution for the rotating slotted cylinder shows
the resolution and noise of this method.
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Figure F.20: The Hancock-van Leer HOG method solution for the rotating cone shows
the resolution and reduced noise of this method




Figure F.2): The Hancock-van Leer HOG method solution for the rotating slotted
cylinder shows the resoluticn and reduced noise of this method.
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Figure F.22: The Runge-Kutta HOG method solution for the rotating cone shows
the resolution and the lack of noise of this miethod.
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Figure F.23: The Runge-Kutta HOG method solution for the rotating slotted cylinder
shows the resolution and the lack of noise of this method.

451



Table F.6: Minunum and maximmn values after one rotation of the slotted cylinder
for various limiters using the Runge-kutta HOG methuod.
T

Limiter Minitnum | Maximum
Minmod ) 0.0000 0.7635
van lLecs 0.0000 0.9237
Central 0.0000 0.9797
Supcrbee 0.0000 0.9999
Generalized Average n=2 ] -0.0759 1.0440

the superhee limiter. Tho center limiter solutions are given in Figs. F.26 and F.27
and the van Leer limiter solutions in Figs. F.28 and F.29. The generalized average
limiter gives a more resolved solution. hut at the cost of symmetry and monotonicity.
These are showt. in Figs. F.30 and F.31. The superbee limiter solutions were shown
in Figs. F.22 anl F.23.
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Figure F.24: The Runge-Kutta HOG method with the minmod limiter solu‘ion for
the rotating cone shows the pour resolution of this limiter.
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Figure F.25: The Runge-Kutta HOG method with the minmod limiter solution for
the rotating slotted cylinder shows the poor resolution of this limiter.
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F.8 Closing Remarks

Of the metliods discussed in this chapter, the split HOG and Runge-Kutta HOG meth-
ods are the clear winners in terms of overall performance. The Runge-Kutta HOG
methods are especially appealing because they can be extended to higher than second-
order accuracy. This makes them important for consideration with ENO schemes or
such schemes as the PPM [122]. The Hancock-van Leer method is an improvement
in terms of performance and economy o er the CTU-type methods. If a larger time
step is desired, the split scher.ies seerm ‘o be quite effective. For systems of equa-
tions, this topic is in need of additional research. Split methods seem to have some
intrinsic problems with systems [243,. Perhaps this swings the balance in favor of
Runge-Kutta-type methods, but the performance of CTU-type methods also needs
critical evaluation for systems.
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Figure F.26: The Runge-Kutta HOG method with the central limiter solution for the

rotating cone shows the resolution of this limiter is nearly on par with the superbee
limiter.
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Figure F.27: The Runge-Kutta HOG method with the central limiter solution for the

rotating slotted cylinder shows the resolution of this limiter is nearly on par wit". the
superbee limiter.



Figure F.28: The Runge-Kutta HOG method with the van Leer limiter solution for
the rotating cone shows the better resolution of this limiter.
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Figure F.29: The Runge-Kutta HOG method with the van Leer limiter solution for
the rotating slotted cylinder shows the better resolution of this limiter.



Figure F.30: The Runge-Kutta HOG method with the generalized average limiter
n = 2 solution for the rotating cone shows the better resolution of this limiter, but
the non-monotonic behavior.
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Figure F.31: The Runge-Kutta HOG method with the generalized average limiter
n = 2 solution for the rotating slotted cylinder shows the better resolution of this
limiter, but the non-monotonic behavior.
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